Pseudo-differential operators and symmetries : background analysis and advanced topics
著者
書誌事項
Pseudo-differential operators and symmetries : background analysis and advanced topics
(Pseudo-differential operators : theory and applications / managing editor, M.W. Wong, v. 2)
Birkhauser, c2010
大学図書館所蔵 全19件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
This monograph is devoted to the development of the theory of pseudo-di?erential n operators on spaces with symmetries. Such spaces are the Euclidean space R ,the n torus T , compact Lie groups and compact homogeneous spaces. The book consists of several parts. One of our aims has been not only to present new results on pseudo-di?erential operators but also to show parallels between di?erent approaches to pseudo-di?erential operators on di?erent spaces. Moreover, we tried to present the material in a self-contained way to make it accessible for readers approaching the material for the ?rst time. However, di?erent spaces on which we develop the theory of pseudo-di?er- tial operators require di?erent backgrounds. Thus, while operators on the - clidean space in Chapter 2 rely on the well-known Euclidean Fourier analysis, pseudo-di?erentialoperatorsonthetorusandmoregeneralLiegroupsinChapters 4 and 10 require certain backgrounds in discrete analysis and in the representation theory of compact Lie groups, which we therefore present in Chapter 3 and in Part III,respectively. Moreover,anyonewhowishestoworkwithpseudo-di?erential- erators on Lie groups will certainly bene?t from a good grasp of certain aspects of representation theory. That is why we present the main elements of this theory in Part III, thus eliminating the necessity for the reader to consult other sources for most of the time. Similarly, the backgrounds for the theory of pseudo-di?erential 3 operators on S and SU(2) developed in Chapter 12 can be found in Chapter 11 presented in a self-contained way suitable for immediate use.
目次
Preface.- Introduction.- Part I Foundations of Analysis.- A Sets, Topology and Metrics.- B Elementary Functional Analysis.- C Measure Theory and Integration.- D Algebras.- Part II Commutative Symmetries.- 1 Fourier Analysis on Rn.- 2 Pseudo-differential Operators on Rn.- 3 Periodic and Discrete Analysis.- 4 Pseudo-differential Operators on Tn.- 5 Commutator Characterisation of Pseudo-differential Operators.- Part III Representation Theory of Compact Groups.- 6 Groups.- 7 Topological Groups.- 8 Linear Lie Groups.- 9 Hopf Algebras.- Part IV Non-commutative Symmetries.- 10 Pseudo-differential Operators on Compact Lie Groups.- 11 Fourier Analysis on SU(2).- 12 Pseudo-differential Operators on SU(2).- 13 Pseudo-differential Operators on Homogeneous Spaces.- Bibliography.- Notation.- Index.
「Nielsen BookData」 より