CR submanifolds of complex projective space
著者
書誌事項
CR submanifolds of complex projective space
(Developments in mathematics, v. 19)
Springer, c2010
大学図書館所蔵 全21件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 169-172
Includes index
内容説明・目次
内容説明
Althoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literature. This text deals with the CR submanifolds of complex manifolds, with particular emphasis on CR submanifolds of complex projective space, and it covers the topics which are necessary for learning the basic properties of these manifolds. We are aware that it is impossible to give a complete overview of these submanifolds, but we hope that these notes can serve as an introduction to their study. We present the fundamental de?nitions and results necessary for reaching the frontiers of research in this ?eld. There are many monographs dealing with some current interesting topics in di?erential geometry, but most of these are written as encyclopedias, or research monographs, gathering recent results and giving the readers ample usefulinformationaboutthetopics. Therefore, thesekindsofmonographsare attractive to specialists in di?erential geometry and related ?elds and acce- able to professional di?erential geometers. However, for graduate students who are less advanced in di?erential geometry, these texts might be hard to read without assistance from their instructors. By contrast, the general philosophy of this book is to begin with the elementary facts about complex manifolds and their submanifolds, give some details and proofs, and introduce the reader to the study of CR submanifolds of complex manifolds; especially complex projective space. It includes only a few original results with precise proofs, while the others are cited in the reference list.
目次
1. Complex manifold.- 2. Almost complex structure.- 3. Complex vector space complexification.- 4. Kahler manifold.- 5. Structure equations of a submanifold.- 6. Submanifolds of a Euclidean space.- 7. Submanifolds of a complex manifold.- 8. The Levi form.- 9. The principal circle bundle S^{2n+1}({\bf P}^n({\bf C}),S^1).- 10. Submersion and immersion.- 11. Hypersurfaces of a Riemannian manifold of constant curvature.- 12. Hypersurfaces of a sphere S^{n+1}(1/a).- 13. Hypersurfaces of a sphere with parallel shape operator.- 14. Codimension reduction of a submanifold.- 15. CR submanifolds of maximal CR dimension.- 16. Real hypersurfaces of a complex projective space.- 17. Tubes around submanifolds.- 18. Levi form of CR submanifolds of maximal CR dimension of a complex space form.- 19. Eigenvalues of the shape operator A of CR submanifolds of maximal CR dimension of a complex space form.- 20. CR submanifolds of maximal CR dimension satisfying the condition h(FX,Y)+h(X,FY)=0.- 21. Contact CR submanifolds of maximal CR dimension.- 22. Invariant submanifolds of real hypersurfaces of complex space forms.- 23. The scalar curvature of CR submanifolds of maximal CR dimension.
「Nielsen BookData」 より