Mirrors and reflections : the geometry of finite reflection groups
Author(s)
Bibliographic Information
Mirrors and reflections : the geometry of finite reflection groups
(Universitext)
Springer, c2010
- : pbk
Available at 34 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. [167]
Includes index
Description and Table of Contents
Description
This graduate/advanced undergraduate textbook contains a systematic and elementary treatment of finite groups generated by reflections. The approach is based on fundamental geometric considerations in Coxeter complexes, and emphasizes the intuitive geometric aspects of the theory of reflection groups. Key features include: many important concepts in the proofs are illustrated in simple drawings, which give easy access to the theory; a large number of exercises at various levels of difficulty; some Euclidean geometry is included along with the theory of convex polyhedra; no prerequisites are necessary beyond the basic concepts of linear algebra and group theory; and a good index and bibliography The exposition is directed at advanced undergraduates and first-year graduate students.
Table of Contents
- Part I Geometric Background.- 1. Affine Euclidean Space ARn.-1.1 Euclidean Space Rn.- 1.2 Affine Euclidean Space ARn.- 1.3 Affine Subspaces.- 1.3.1 Subspaces.- 1.3.2 Systems of Linear Equations.- 1.3.3 Points and Lines .- 1.3.4 Planes .- 1.3.5 Hyperplanes.- 1.3.6 Orthogonal Projection.- 1.4 Half-Spaces.- 1.5 Bases and Coordinates.- 1.6 Convex Sets.- 2 Isometries of ARn .- 2.1 Fixed Points of Groups of Isometries.- 2.2 Structure of IsomARn .- 2.2.1 Translations.- 2.2.2 Orthogonal Transformations .- 3 Hyperplane Arrangements.- 3.1 Faces of a Hyperplane Arrangement.- 3.2 Chambers.- 3.3 Galleries.- 3.4 Polyhedra.- 4 Polyhedral Cones.- 4.1 Finitely Generated Cones .- 4.1.1 Cones.- .1.2 Extreme Vectors and Edges .- 4.2 Simple Systems of Generators.- 4.3 Duality .- 4.4 Duality for Simplicial Cones .- 5 Faces of a Simplicial Cone.- Part II Mirrors, Reflections, Roots.- 5 Mirrors and Reflections.- 6 Systems of Mirrors.- 6.1 Systems of Mirrors.- 6.2 Finite Reflection Groups.- 7 Dihedral Groups.- 7.1 Groups Generated by two Involutions.- 7.2 Proof of Theorem 7.1 .- 7.3 Dihedral Groups: Geometric Interpretation .- 8 Root Systems.- 8.1 Mirrors and their Normal Vectors.- 8.2 Root Systems.- 8.3 Planar Root Systems.- 8.4 Positive and Simple Systems.- 9 Root Systems An!1, BCn, Dn.- 9.1 Root System An!1 .- 9.1.1 A Few Words about Permutations .- 9.1.2 Permutation Representation of Symn .- 9.1.3 Regular Simplices .- 9.1.4 The Root System An!1 .- 9.1.5 The Standard Simple System.- 9.1.6 Action of Symn on the Set of all Simple Systems .- 9.2 Root Systems of Types Cn and Bn .- 9.2.1 Hyperoctahedral Group.- 9.2.2 Admissible Orderings.- 9.2.3 Root Systems Cn and Bn.- 9.2.4 Action of W on C.- 9.3 The Root System Dn.- Part III Coxeter Complexes.- 10 Chambers.- 11 Generation.- 11.1 Simple Reflections.- 11.2 Foldings.- 11.3 Galleries and Paths.- 11.4 Action of W on C.- 11.5 Paths and Foldings.- 11.6 Simple Transitivity of W on C: Proof of Theorem 11.6.- 12 Coxeter Complex.- 12.1 Labeling of the Coxeter Complex.- 12.2 Length of Elements in W.- 12.3 Opposite Chamber.- 12.4 Isotropy Groups.- 12.5 Parabolic Subgroups.- 13 Residues.- 13.1 Residues.- 13.2 Example.- 13.3 The Mirror System of a Residue.- 13.4 Residues are Convex.- 13.5 Residues: the Gate Property.- 13.6 The Opposite Chamber.- 14 Generalized Permutahedra.- Part IV Classification.- 15 Generators and Relations.- 15.1 Reflection Groups are Coxeter Groups. 15.2 Proof of Theorem 15.1.- 16 Classification of Finite Reflection Groups.- 16.1 Coxeter Graph.- 16.2 Decomposable Reflection Groups.- 16.3 Labeled Graphs and Associated Bilinear Forms.- 16.4 Classification of Positive Definite Graphs.- 17 Construction of Root Systems.- 17.1 Root System An.- 17.2 Root System Bn, n > 2.- 17.3 Root System Cn, n > 2.- 17.4 Root System Dn, n > 4.- 17.5 Root System E8.- 17.6 Root System E7 17.7 Root System E6.- 17.8 Root System F4 .- 9 Root System G2 .- 17.10 Crystallographic Condition .- 18 Orders of Reflection Groups .- Part V Three-Dimensional Reflection Groups.- 19 Reflection Groups in Three Dimensions.- 19.1 Planar Mirror Systems.- 19.2 From Mirror Systems to Tessellations of the Sphere.- 19.3 The Area of a Spherical Triangle.- 19.4 Classification of Finite Reflection Groups in Three Dimensions.- 20 Icosahedron.- 20.1 Construction.- 20.2 Uniqueness and Rigidity.- 20.3 The Symmetry Group of the Icosahedron.- Part VI Appendices.- A The Forgotten Art of Blackboard Drawing.- B Hints and Solutions to Selected Exercises.- References.- Index.
by "Nielsen BookData"