Statistical models
Author(s)
Bibliographic Information
Statistical models
(Cambridge series on statistical and probabilistic mathematics)
Cambridge University Press, 2008
- : pbk
Available at 12 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"First published 2003. First paperback edition 2008"--T.p. verso
Includes bibliographical references (p. 699-711) and index
Description and Table of Contents
Description
Models and likelihood are the backbone of modern statistics. This 2003 book gives an integrated development of these topics that blends theory and practice, intended for advanced undergraduate and graduate students, researchers and practitioners. Its breadth is unrivaled, with sections on survival analysis, missing data, Markov chains, Markov random fields, point processes, graphical models, simulation and Markov chain Monte Carlo, estimating functions, asymptotic approximations, local likelihood and spline regressions as well as on more standard topics such as likelihood and linear and generalized linear models. Each chapter contains a wide range of problems and exercises. Practicals in the S language designed to build computing and data analysis skills, and a library of data sets to accompany the book, are available over the Web.
Table of Contents
- 1. Introduction
- 2. Variation
- 3. Uncertainty
- 4. Likelihood
- 5. Models
- 6. Stochastic models
- 7. Estimation and hypothesis testing
- 8. Linear regression models
- 9. Designed experiments
- 10. Nonlinear regression models
- 11. Bayesian models
- 12. Conditional and marginal inference.
by "Nielsen BookData"