Multiscale, nonlinear and adaptive approximation : dedicated to Wolfgang Dahmen on the occasion of his 60th birthday
著者
書誌事項
Multiscale, nonlinear and adaptive approximation : dedicated to Wolfgang Dahmen on the occasion of his 60th birthday
Springer, c2009
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
On the occasion of his 60th birthday in October 2009, friends, collaborators, and admirers of Wolfgang Dahmen have organized this volume which touches on va- ous of his research interests. This volume will provide an easy to read excursion into many important topics in applied and computational mathematics. These include nonlinear and adaptive approximation, multivariate splines, subdivision schemes, multiscale and wavelet methods, numerical schemes for partial differential and boundary integral equations, learning theory, and high-dimensional integrals. College Station, Texas, USA Ronald A. DeVore Paderborn, Germany Angela Kunoth June 2009 vii Acknowledgements We are deeply grateful to Dr. Martin Peters and Thanh-Ha Le Thi from Springer for realizing this book project and to Frank Holzwarth for technical support. ix Contents Introduction: Wolfgang Dahmen's mathematical work...1 Ronald A. DeVore and Angela Kunoth 1 Introduction ...1 2 The early years: Classical approximation theory...2 3 Bonn, Bielefeld, Berlin, and multivariate splines ...2 3. 1 Computer aided geometric design ...3 3. 2 Subdivision and wavelets ...4 4 Wavelet and multiscale methods for operator equations...5 4.
1 Multilevel preconditioning ...5 4. 2 Compression of operators...5 5 Adaptive solvers ...6 6 Constructionandimplementation...7 7 Hyperbolic partial differential equations and conservation laws ...8 8 Engineering collaborations ...9 9 Thepresent ...9 10 Finalremarks...10 Publications by Wolfgang Dahmen (as of summer 2009)...10 The way things were in multivariate splines: A personal view...19 Carl de Boor 1 Tensor product spline interpolation...19 2 Quasiinterpolation ...20 3 MultivariateB-splines ...21 4 Kergininterpolation ...
目次
Introduction: Wolfgang Dahmen's mathematical work.- The way things were in multivariate splines: A personal view.- On the efficient computation of high-dimensional integrals and the approximation by exponential sums.- Adaptive and anisotropic piecewise polynomial approximation.- Anisotropic function spaces with applications.- Nonlinear approximation and its applications.- Univariate subdivision and multi-scale transforms: The nonlinear case.- Rapid solution of boundary integral equations by wavelet Galerkin schemes.- Learning out of leaders.- Optimized wavelet preconditioning.- Multiresolution schemes for conservation laws.- Theory of adaptive finite element methods: An introduction.- Adaptive wavelet methods for solving operator equations: An overview.- Optimal multilevel methods for (grad), (curl), and (div) systems on graded and unstructured grids.
「Nielsen BookData」 より