Mathematical logic : foundations for information science
著者
書誌事項
Mathematical logic : foundations for information science
(Progress in computer science and applied logic, v. 25)
Birkhäuser, c2010
- タイトル別名
-
数理逻辑 : 基本原理与形式演算
大学図書館所蔵 全14件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
English version based on: 数理逻辑 : 基本原理与形式演算. Beijing, : Science Press, 2007
Includes bibliographical references (p. [253]-255) and index
内容説明・目次
内容説明
Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. It provides guidelines for the development of information science and technology. This book, with 10 chapters, presents basic principles and formal calculus of mathematical logic systematically. The first five chapters cover the core contents of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Godel's theorems. The contents of the last five chapters are extensions and developments of classical mathematical logic. This part elaborates version sequences of formal theories and their limits, the system of revision calculus, proxchemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. It also describes the paradigm of environments of three kinds of languages and the basic principles of metalanguage environments and addresses the workflow of scientific research in the information era.
The first five chapters of this book may be used as an undergraduate text in mathematical logic and the last five chapters may be taught to graduate students in relevant disciplines. The book may serve as a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences.
目次
Preface.- Glossary.- 1. Syntax of First-Order Languages.- 1.1 Symbols of first-order languages.- 1.2 Terms.- 1.3 Logical formulas.- 1.4 Free variables and substitutions.- 1.5 Godel terms of formulas.- 1.6 Proof by structural inductions.- 2. Models of First-Order Languages.- 2.1 Domains and interpretations.- 2.2 Assignments and models.- 2.3 Meanings of terms.- 2.4 Meanings of logical connective symbols.- 2.5 Meanings of formulas.- 2.6 Satisfiability and validity.- 2.7 Valid formulas on .- 2.8 Hintikka set.- 2.9 Herbrand model.- 2.10 Herbrand model with variables.- 2.11 Substitution lemma.- 3. Formal Inference Systems.- 3.1 G inference system.- 3.2 Proof trees, inference trees, and provable sequents.- 3.3 Soundness of the G inference system.- 3.4 Compactness and consistency.- 3.5 Completeness of the G inference system.- 3.6 Some commonly used inference rules.- 3.7 Proof theory and model theory.- 4. Computability and Representability.- 4.1 Formal theories.- 4.2 Elementary arithmetic theory .- 4.3 P-procedures on N.- 4.4 Church-Turhign thesis.- 4.5 Problem of representability.- 4.6 States of P-procedures.- 4.7 System of operational calculus of P-procedure statements.- 4.8 Representation of P-procedure statements.- 4.9 Representability theorem.- 5. Godel Theorems.- 5.1 Self-referential statements.- 5.2 Deciadable sets.- 5.3 Fixed point equation in .- 5.4 Godel incompleteness theorem.- 5.5 Godel consistency theorem.- 5.6 Halt problem.- 6. Sequences of Formal Theories.- 6.1 Two examples.- 6.2 Sequences of formal theories.- 6.3 Proxchemes.- 6.4 Resolution sequences.- 6.5 Sequences of default expansions.- 6.6 Forcing sequences.- 6.7 Discussions about proxchemes.- 7. Refutation by Facts and Revision Calculus.- 7.1 Necessary antecedents of formal consequences.- 7.2 New conjectures and new axioms.- 7.3 Refutation by facts and maximal contraction.- 7.4 R-calculus.- 7.5 Some examples.- 7.6 Reachability of theR-calculus.- 7.7 Soundness and completeness of the R-calculus.- 7.8 Basic theorem of testing.- 8. Version Sequences and Proxchemes.- 8.1 Versions and version sequences.- 8.2 OPEN proxcheme.- 8.3 Convergency of the P-proxcheme.- 8.4 Commutativity of the P-proxcheme.- 8.5 Independency of the P-proxcheme.- 8.6 Ideal proxchemes.- 9. Inductive Inference and Inductive Process.- 9.1 Basic terms, basic sentences, and basic instances.- 9.2 Inductive inference system A.- 9.3 Inductive version and inductive process.- 9.4 GUINA proxcheme.- 9.5 Convergency of the GUINA proxcheme.- 9.6 Commutativity of the GUINA proxcheme.- 9.7 Independency of the GUINA proxcheme.- 10. Metalanguage Environments of First-Order Languages.- 10.1 Environments of three kinds of languages.- 10.2 Basic principles of the environment of metalanguage.- 10.3 Axiomatization method.- 10.4 Formalization method.- 10.5 Workflow of scientific research.- Appendix 1 Sets and Mappings.- Appendix 2 Substitution Lemma and Its Proof.- Appendix 3 Proof of the Representability Theorem.- References.- Index.
「Nielsen BookData」 より