Feynman motives
Author(s)
Bibliographic Information
Feynman motives
World Scientific Publishing, c2010
- : pbk
Available at 29 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliography (p. 207-213) and index
Description and Table of Contents
- Volume
-
ISBN 9789814271202
Description
This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer.Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry.The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area.
Table of Contents
This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. The main question is whether residues of Feynman integrals always evaluate to periods of mixed Tate motives, as appears to be the case from extensive computations of Feynman integrals carried out by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach grew out of work of Bloch-Esnault-Kreimer and suggests that, while the algebraic varieties associated to the Feynman graphs can be arbitrarily complicated as motives, the part that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization with those formed by mixed Tate motives. The book draws connections between these two approaches and gives an overview of various ongoing directions of research in the field. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it cal also be used by graduate students interested in working in this area.
- Volume
-
: pbk ISBN 9789814304481
Description
This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer.Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry.The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area.
Table of Contents
- Perturbative Quantum Field Theory and Feynman Diagrams
- Motives and Periods
- Feynman Integrals and Algebraic Varieties
- Feynman Integrals, Singularities, Hodge Structures
- Connes-Kreimer Theory in a Nutshell
- The Riemann-Hilbert Correspondence
- Renormalization and Singularities
- Beyond Scalar Theories.
by "Nielsen BookData"