Problems of number theory in mathematical competitions
Author(s)
Bibliographic Information
Problems of number theory in mathematical competitions
(Mathematical Olympiad series / series editors, Lee Peng Yee, Xiong Bin, v. 2)
East China Normal University Press, c2010
- : pbk
Available at 7 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Description and Table of Contents
Description
Number theory is an important research field of mathematics. In mathematical competitions, problems of elementary number theory occur frequently. These problems use little knowledge and have many variations. They are flexible and diverse. In this book, the author introduces some basic concepts and methods in elementary number theory via problems in mathematical competitions. Readers are encouraged to try to solve the problems by themselves before they read the given solutions of examples. Only in this way can they truly appreciate the tricks of problem-solving.
Table of Contents
- Divisibility
- Greatest Common Divisors and Least Common Multiples
- Prime Numbers and Unique Factorization Theorem
- Indeterminate Equations (I)
- Selected Lectures on Competition Problems (I)
- Congruence
- Some Famous Theorems in Number Theory
- Order and Its Application
- Indeterminate Equations (II)
- Selected Lectures on Competition Problems (II).
by "Nielsen BookData"