Introduction to complex reflection groups and their braid groups
Author(s)
Bibliographic Information
Introduction to complex reflection groups and their braid groups
(Lecture notes in mathematics, 1988)
Springer, c2010
Available at 58 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 133-135) and index
Description and Table of Contents
Description
toComplexRe ectionGroups and Their Braid Groups 123 Michel Broue Universite Paris Diderot Paris 7 UFR de Mathematiques 175 Rue du Chevaleret 75013 Paris France broue@math. jussieu. fr ISBN: 978-3-642-11174-7 e-ISBN: 978-3-642-11175-4 DOI: 10. 1007/978-3-642-11175-4 Springer Heidelberg Dordrecht London New York Lecture Notes in Mathematics ISSN print edition: 0075-8434 ISSN electronic edition: 1617-9692 Library of Congress Control Number: 2009943837 Mathematics Subject Classi cation (2000): 20, 13, 16, 55 c Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, speci cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro lm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of aspeci c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover illustration: c Anouk Grinberg Cover design: SPi Publisher Services Printed on acid-free paper springer. com Preface Weyl groups are ?nite groups acting as re?ection groups on rational vector spaces. It iswellknownthat theserationalre?ectiongroupsappearas"ske- tons" of many important mathematical objects: algebraic groups, Hecke algebras, Artin-Tits braid groups, etc.
Table of Contents
Preliminaries.- Prerequisites and Complements in Commutative Algebra.- Polynomial Invariants of Finite Linear Groups.- Finite Reflection Groups in Characteristic Zero.- Eigenspaces and Regular Elements.
by "Nielsen BookData"