Kurt Gödel : essays for his centennial
著者
書誌事項
Kurt Gödel : essays for his centennial
(Lecture notes in logic, 33)
Cambridge University Press, 2010
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
Kurt Goedel (1906-1978) did groundbreaking work that transformed logic and other important aspects of our understanding of mathematics, especially his proof of the incompleteness of formalized arithmetic. This book on different aspects of his work and on subjects in which his ideas have contemporary resonance includes papers from a May 2006 symposium celebrating Goedel's centennial as well as papers from a 2004 symposium. Proof theory, set theory, philosophy of mathematics, and the editing of Goedel's writings are among the topics covered. Several chapters discuss his intellectual development and his relation to predecessors and contemporaries such as Hilbert, Carnap, and Herbrand. Others consider his views on justification in set theory in light of more recent work and contemporary echoes of his incompleteness theorems and the concept of constructible sets.
目次
- Part I. General: 1. The Goedel editorial project: a synopsis Solomon Feferman
- 2. Future tasks for Goedel scholars John W. Dawson, Jr, and Cheryl A. Dawson
- Part II. Proof Theory: 3. Kurt Goedel and the metamathematical tradition Jeremy Avigad
- 4. Only two letters: the correspondence between Herbrand and Goedel Wilfried Sieg
- 5. Goedel's reformulation of Gentzen's first consistency proof for arithmetic: the no-counter-example interpretation W. W. Tait
- 6. Goedel on intuition and on Hilbert's finitism W. W. Tait
- 7. The Goedel hierarchy and reverse mathematics Stephen G. Simpson
- 8. On the outside looking in: a caution about conservativeness John P. Burgess
- Part III. Set Theory: 9. Goedel and set theory Akihiro Kanamori
- 10. Generalizations of Goedel's universe of constructible sets Sy-David Friedman
- 11. On the question of absolute undecidability Peter Koellner
- Part IV. Philosophy of Mathematics: 12. What did Goedel believe and when did he believe it? Martin Davis
- 13. On Goedel's way in: the influence of Rudolf Carnap Warren Goldfarb
- 14. Goedel and Carnap Steve Awodey and A. W. Carus
- 15. On the philosophical development of Kurt Goedel Mark van Atten and Juliette Kennedy
- 16. Platonism and mathematical intuition in Kurt Goedel's thought Charles Parsons
- 17. Goedel's conceptual realism Donald A. Martin.
「Nielsen BookData」 より