Differential geometry of curves and surfaces
著者
書誌事項
Differential geometry of curves and surfaces
A.K. Peters, c2010
大学図書館所蔵 全12件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 325-326) and index
内容説明・目次
内容説明
Students and professors of an undergraduate course in differential geometry will appreciate the clear exposition and comprehensive exercises in this book that focuses on the geometric properties of curves and surfaces, one- and two-dimensional objects in Euclidean space. The problems generally relate to questions of local properties (the properties observed at a point on the curve or surface) or global properties (the properties of the object as a whole). Some of the more interesting theorems explore relationships between local and global properties.
A special feature is the availability of accompanying online interactive java applets coordinated with each section. The applets allow students to investigate and manipulate curves and surfaces to develop intuition and to help analyze geometric phenomena.
目次
Preface
Acknowledgements
Plane Curves: Local Properties
Parameterizations
Position, Velocity, and Acceleration
Curvature
Osculating Circles, Evolutes, and Involutes
Natural Equations
Plane Curves: Global Properties
Basic Properties
Rotation Index
Isoperimetric Inequality
Curvature, Convexity, and the Four-Vertex Theorem
Curves in Space: Local Properties
Definitions, Examples, and Differentiation
Curvature, Torsion, and the Frenet Frame
Osculating Plane and Osculating Sphere
Natural Equations
Curves in Space: Global Properties
Basic Properties
Indicatrices and Total Curvature
Knots and Links
Regular Surfaces
Parametrized Surfaces
Tangent Planes and Regular Surfaces
Change of Coordinates
The Tangent Space and the Normal Vector
Orientable Surfaces
The First and Second Fundamental Forms
The First Fundamental Form
The Gauss Map
The Second Fundamental Form
Normal and Principal Curvatures
Gaussian and Mean Curvature
Ruled Surfaces and Minimal Surfaces
The Fundamental Equations of Surfaces
Tensor Notation
Gauss's Equations and the Christoffel Symbols
Codazzi Equations and the Theorema Egregium
The Fundamental Theorem of Surface Theory
Curves on Surfaces
Curvatures and Torsion
Geodesics
Geodesic Coordinates
Gauss-Bonnet Theorem and Applications
Intrinsic Geometry
Bibliography
「Nielsen BookData」 より