離散体積計算による組合せ数学入門
著者
書誌事項
離散体積計算による組合せ数学入門
シュプリンガー・ジャパン, 2010.7
- タイトル別名
-
Computing the continuous discretely : integer-point enumeration in polyhedra
- タイトル読み
-
リサン タイセキ ケイサン ニヨル クミアワセ スウガク ニュウモン
大学図書館所蔵 全91件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
この図書・雑誌をさがす
注記
参考文献: p[245]-256
内容説明・目次
内容説明
組合せ論の重要な問題のいくつかは、凸多面体における格子点数え上げ問題に帰着される。近年、凸多面体における格子点数え上げに関する数学的基礎、計算理論的方法論が大きく発展してきた。本書は格子点数え上げをテーマとした組合せ論の教科書である。本書では、凸多面体における格子点数え上げ問題を通して、組合せ数学の基礎概念(数え上げ、母関数、相互法則)を導入し、その問題と数論および幾何学との関連を紹介している。
目次
- 第1部 離散体積計算の真髄(Frobeniusの硬貨交換問題;離散体積の展覧会;多面体の格子点を数える:Ehrhart理論;相互法則;面数とEhrhart理論に関するDehn—Sommerville関係式;魔方陣)
- 第2部 基礎を超えて(有限Fourier解析;Dedekind和:格子点数え上げの構成要素;多面体の錐分割;RdにおけるEuler‐Maclaurin和;立体角;楕円関数を用いたGreenの定理の離散版)
「BOOKデータベース」 より