Eddy current approximation of Maxwell equations : theory, algorithms and applications
Author(s)
Bibliographic Information
Eddy current approximation of Maxwell equations : theory, algorithms and applications
(MS&A, v. 4)
Springer, c2010
- : hbk
- : pbk
Available at 4 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Continuamentenasconoifatti 1 aconfusionedelleteorie 2 Carlo Dossi Electromagnetism is withoutany doubt a fascinating area of physics, engineering and mathematics. Since the early pioneeringworks ofAmpere, Faraday, and Maxwell, the scienti?cliteratureon this subject has become immense, and books devoted to almost all of its aspects have been published in the meantime. However, webelievethatthereisstillsomeplacefornew booksdealingwithel- tromagnetism, particularly if they are focused on more speci?c models, or try to mix different levels of analysis: rigorous mathematical results, sound numerical appro- mation schemes, real-life examples from physics and engineering. The complete mathematical description of electromagnetic problems is provided by the celebrated Maxwell equations, a system of partial differential equations - pressed interms ofphysical quantitiesliketheelectric?eld, themagnetic?eld and the currentdensity.Maxwell'scontributiontotheformulationofthese equationsisrelated to the introductionof a speci?c term, called displacement current, that he proposed to add to the set of equations generally assumed to hold at that time, in order to ensure the conservation of the electric charge.
The presence of the displacement current permits to describe one of the most - portant phenomenon in electromagnetism, namely, wave propagation; however, in many interesting applications the propagation speed of the wave is very high with respect to the ratio of some typical length and time scale of the considered device, and therefore the dominant aspect becomes the diffusionof the electromagnetic ?elds. When the focus is on diffusioninstead of propagation, from the modelingpointof view this corresponds to neglecting the time derivative of the electric induction (i.e., thedisplacement current introducedby Maxwell)or, alternatively,neglectingthe time derivative of the magnetic induction.
Table of Contents
Setting the problem.- A mathematical justification of the eddy current model.- Existence and uniqueness of the solution.- Hybrid formulations for the electric and magnetic fields.- Formulations via scalar potentials.- Formulations via vector potentials.- Coupled FEM-BEM approaches.- Voltage and current intensity excitation.- Selected applications.
by "Nielsen BookData"