Vitushkin's conjecture for removable sets
著者
書誌事項
Vitushkin's conjecture for removable sets
(Universitext)
Springer, c2010
大学図書館所蔵 全21件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 317-319) and index
内容説明・目次
内容説明
Vitushkin's conjecture, a special case of Painleve's problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arclength measure. Chapters 1-5 of the book provide important background material on removability, analytic capacity, Hausdorff measure, arclength measure, and Garabedian duality that will appeal to many analysts with interests independent of Vitushkin's conjecture. The fourth chapter contains a proof of Denjoy's conjecture that employs Melnikov curvature. A brief postscript reports on a deep theorem of Tolsa and its relevance to going beyond Vitushkin's conjecture. This text can be used for a topics course or seminar in complex analysis. To understand it, the reader should have a firm grasp of basic real and complex analysis.
目次
Preface.- 1 Removable Sets and Analytic Capacity.- 1.1 Removable Sets.- 1.2 Analytic Capacity.- 2 Removable Sets and Hausdor Measure.- 2.1 Hausdor Measure and Dimension.- 2.2 Painleve's Theorem.- 2.3 Frostman's Lemma.- 2.4 Conjecture & Refutation: The Planar Cantor Quarter Set.- 3 Garabedian Duality for Hole-Punch Domains.- 3.1 Statement of the Result and an Initial Reduction.- 3.2 Interlude: Boundary Correspondence for H1(U).- 3.3 Interlude: Some F. & M. Riesz Theorems.- 3.4 Construction of the Boundary Garabedian Function.- 3.5 Construction of the Interior Garabedian Function.- 3.6 A Further Reduction.- 3.7 Interlude: Some Extension and Join Propositions.- 3.8 Analytically Extending the Ahlfors and Garabedian Functions.- 3.9 Interlude: Consequences of the Argument Principle.- 3.10 An Analytic Logarithm of the Garabedian Function.- 4 Melnikov and Verdera's Solution to the Denjoy Conjecture.- 4.1 Menger Curvature of Point Triples.- 4.2 Melnikov's Lower Capacity Estimate.- 4.3 Interlude: A Fourier Transform Review.- 4.4 Melnikov Curvature of Some Measures on Lipschitz Graphs.- 4.5 Arclength & Arclength Measure: Enough to Do the Job.- 4.6 The Denjoy Conjecture Resolved Affirmatively.- 4.7 Conjecture & Refutation: The Joyce-Moerters Set.- 5 Some Measure Theory.- 5.1 The Caratheodory Criterion and Metric Outer Measures.- 5.2 Arclength & Arclength Measure: The Rest of the Story.- 5.3 A Vitali Covering Lemma and Planar Lebesgue Measure.- 5.4 Regularity Properties of Hausdor Measures.- 5.5 The Besicovitch Covering Lemma and Lebesgue Points.- 6 A Solution to Vitushkin's Conjecture Modulo Two Difficult Results.- 6.1 Statement of the Conjecture and a Reduction.- 6.2 Cauchy Integral Representation.- 6.3 Estimates of Truncated Cauchy Integrals.- 6.4 Estimates of Truncated Suppressed Cauchy Integrals.- 6.5 Vitushkin's Conjecture Resolved Affirmatively Modulo Two Difficult Results.- 6.6 Postlude: The Original Vitushkin Conjecture.- 7 The T(b) Theorem of Nazarov, Treil, and Volberg.- 7.1 Restatement of the Result.- 7.2 Random Dyadic Lattice Construction.- 7.3 Lip(1)-Functions Attached to Random Dyadic Lattices.- 7.4 Construction of the Lip(1)-Function of the Theorem.- 7.5 The Standard Martingale Decomposition.- 7.6 Interlude: The Dyadic Carleson Imbedding Inequality.- 7.7 The Adapted Martingale Decomposition.- 7.8 Bad Squares and Their Rarity.- 7.9 The Good/Bad-Function Decomposition.- 7.10 Reduction to the Good Function Estimate.- 7.11 A Sticky Point, More Reductions, and Course Setting.- 7.12 Interlude: The Schur Test.- 7.13 G1: The Crudely Handled Terms.- 7.14 G2: The Distantly Interacting Terms.- 7.15 Splitting Up the G3 Terms.- 7.16 Gterm 3 : The Suppressed Kernel Terms.- 7.17 Gtran 3 : The Telescoping Terms.- 8 The Curvature Theorem of David and Leger.- 8.1 Restatement of the Result and an Initial Reduction.- 8.2 Two Lemmas Concerning High Density Balls.- 8.3 The Beta Numbers of Peter Jones.- 8.4 Domination of Beta Numbers by Local Curvature.- 8.5 Domination of Local Curvature by Global Curvature.- 8.6 Selection of Parameters for the Construction.- 8.7 Construction of a Baseline L0.- 8.8 De nition of a Stopping-Time Region S0.- 8.9 De nition of a Lipschitz Set K0 over the Base Line.- 8.10 Construction of Adapted Dyadic Intervals on the Base Line.- 8.11 Assigning Linear Functions to Adapted Dyadic Intervals.- 8.12 Construction of a Lipschitz Graph G Threaded through K0.- 8.13 Veri cation that the Graph is Indeed Lipschitz.- 8.14 A Partition of K n K0 into Three Sets: K1, K2, & K3.- 8.15 The Smallness of the Set K2.- 8.16 The Smallness of a Horrible Set H.- 8.17 Most of K Lies in the Vicinity of the Lipschitz Graph.- 8.18 The Smallness of the Set K1.- 8.19 Gamma Functions of the Lipschitz Graph.- 8.20 A Point Estimate on One of the Gamma Functions.- 8.21 A Global Estimate on the Other Gamma Function.- 8.22 Interlude:
「Nielsen BookData」 より