Symmetries of compact Riemann surfaces
Author(s)
Bibliographic Information
Symmetries of compact Riemann surfaces
(Lecture notes in mathematics, 2007)
Springer, c2010
Available at 51 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Other authors: Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki
Includes bibliographical references (p. 151-155) and index
Description and Table of Contents
Description
The content of this monograph is situated in the intersection of important branches of mathematics like the theory of one complex variable, algebraic geometry, low dimensional topology and, from the point of view of the techniques used, com- natorial group theory. The main tool comes from the Uniformization Theorem for Riemannsurfaces,whichrelatesthetopologyofRiemannsurfacesandholomorphic or antiholomorphic actions on them to the algebra of classical cocompact Fuchsian groups or, more generally, non-euclidean crystallographic groups. Foundations of this relationship were established by A. M. Macbeath in the early sixties and dev- oped later by, among others, D. Singerman. Another important result in Riemann surface theory is the connection between Riemannsurfacesandtheir symmetrieswith complexalgebraiccurvesandtheirreal forms. Namely, there is a well known functorial bijective correspondence between compact Riemann surfaces and smooth, irreducible complex projective curves. The fact that a Riemann surface has a symmetry means, under this equivalence, that the corresponding complex algebraic curve has a real form, that is, it is the complex- cation of a real algebraic curve.
Moreover, symmetries which are non-conjugate in the full group of automorphisms of the Riemann surface, correspond to real forms which are birationally non-isomorphic over the reals. Furthermore, the set of points xedbyasymmetryishomeomorphictoaprojectivesmoothmodeloftherealform.
Table of Contents
Preliminaries.- On the Number of Conjugacy Classes of Symmetries of Riemann Surfaces.- Counting Ovals of Symmetries of Riemann Surfaces.- Symmetry Types of Some Families of Riemann Surfaces.- Symmetry Types of Riemann Surfaces with a Large Group of Automorphisms.
by "Nielsen BookData"