Algebraic curves and cryptography
著者
書誌事項
Algebraic curves and cryptography
(Fields Institute communications, v. 58)
American Mathematical Society, c2010
大学図書館所蔵 全21件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 129-132) and index
内容説明・目次
内容説明
It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's $\ell$-adic point counting algorithm, the $p$-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on the Jacobians of $C_{ab}$ curves and zeta functions. This volume is based on seminars on algebraic curves and cryptography held at the GANITA Lab of the University of Toronto during 2001-2008. The articles are mostly suitable for independent study by graduate students who wish to enter the field, both in terms of introducing basic material as well as guiding them in the literature. The literature in cryptography seems to be growing at an exponential rate. For a new entrant into the subject, navigating through this ocean can seem quite daunting. In this volume, the reader is steered toward a discussion of a few key ideas of the subject, together with some brief guidance for further reading. It is hoped that this approach may render the subject more approachable. Titles in this series are co-published with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).|It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's $\ell$-adic point counting algorithm, the $p$-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on the Jacobians of $C_{ab}$ curves and zeta functions. This volume is based on seminars on algebraic curves and cryptography held at the GANITA Lab of the University of Toronto during 2001-2008. The articles are mostly suitable for independent study by graduate students who wish to enter the field, both in terms of introducing basic material as well as guiding them in the literature. The literature in cryptography seems to be growing at an exponential rate. For a new entrant into the subject, navigating through this ocean can seem quite daunting. In this volume, the reader is steered toward a discussion of a few key ideas of the subject, together with some brief guidance for further reading. It is hoped that this approach may render the subject more approachable. Titles in this series are co-published with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).
「Nielsen BookData」 より