Generalizations of Thomae's formula for Z[n] curves

著者

書誌事項

Generalizations of Thomae's formula for Z[n] curves

Hershel M. Farkas, Shaul Zemel

(Developments in mathematics, 21)

Springer, c2011

大学図書館所蔵 件 / 16

この図書・雑誌をさがす

注記

On t.p., "[n]" is subscript

内容説明・目次

内容説明

Previous publications on the generalization of the Thomae formulae to Zn curves have emphasized the theory's implications in mathematical physics and depended heavily on applied mathematical techniques. This book redevelops these previous results demonstrating how they can be derived directly from the basic properties of theta functions as functions on compact Riemann surfaces. "Generalizations of Thomae's Formula for Zn Curves" includes several refocused proofs developed in a generalized context that is more accessible to researchers in related mathematical fields such as algebraic geometry, complex analysis, and number theory. This book is intended for mathematicians with an interest in complex analysis, algebraic geometry or number theory as well as physicists studying conformal field theory.

目次

- Introduction.- 1. Riemann Surfaces.- 2. Zn Curves.- 3. Examples of Thomae Formulae.- 4. Thomae Formulae for Nonsingular Zn Curves.- 5. Thomae Formulae for Singular Zn Curves.-6. Some More Singular Zn Curves.-Appendix A. Constructions and Generalizations for the Nonsingular and Singular Cases.-Appendix B. The Construction and Basepoint Change Formulae for the Symmetric Equation Case.-References.-List of Symbols.-Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB04352204
  • ISBN
    • 9781441978462
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    xvii, 354 p.
  • 大きさ
    25 cm
  • 分類
  • 親書誌ID
ページトップへ