Generalizations of Thomae's formula for Z[n] curves
著者
書誌事項
Generalizations of Thomae's formula for Z[n] curves
(Developments in mathematics, 21)
Springer, c2011
大学図書館所蔵 件 / 全16件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
On t.p., "[n]" is subscript
内容説明・目次
内容説明
Previous publications on the generalization of the Thomae formulae to Zn curves have emphasized the theory's implications in mathematical physics and depended heavily on applied mathematical techniques. This book redevelops these previous results demonstrating how they can be derived directly from the basic properties of theta functions as functions on compact Riemann surfaces.
"Generalizations of Thomae's Formula for Zn Curves" includes several refocused proofs developed in a generalized context that is more accessible to researchers in related mathematical fields such as algebraic geometry, complex analysis, and number theory.
This book is intended for mathematicians with an interest in complex analysis, algebraic geometry or number theory as well as physicists studying conformal field theory.
目次
- Introduction.- 1. Riemann Surfaces.- 2. Zn Curves.- 3. Examples of Thomae Formulae.- 4. Thomae Formulae for Nonsingular Zn Curves.- 5. Thomae Formulae for Singular Zn Curves.-6. Some More Singular Zn Curves.-Appendix A. Constructions and Generalizations for the Nonsingular and Singular Cases.-Appendix B. The Construction and Basepoint Change Formulae for the Symmetric Equation Case.-References.-List of Symbols.-Index.
「Nielsen BookData」 より