Wiener chaos: moments, cumulants and diagrams : a survey with computer implementation

著者

書誌事項

Wiener chaos: moments, cumulants and diagrams : a survey with computer implementation

Giovanni Peccati, Murad S. Taqqu

(Bocconi & Springer series / (series editors) Sandro Salsa ... [et al.], 1)

Springer : Bocconi University Press, c2011

大学図書館所蔵 件 / 13

この図書・雑誌をさがす

注記

Includes bibliographical references (p. [263]-270) and index

内容説明・目次

内容説明

The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Moebius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB04466790
  • ISBN
    • 9788847016781
  • 出版国コード
    it
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Milan
  • ページ数/冊数
    xiii, 274 p.
  • 大きさ
    25 cm
  • 分類
  • 親書誌ID
ページトップへ