Symmetry, group theory, and the physical properties of crystals
Author(s)
Bibliographic Information
Symmetry, group theory, and the physical properties of crystals
(Lecture notes in physics, 824)
Springer, c2010
Available at 14 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Whydowelookatsomethingsandthinktheyarebeautifulwhileotherthingsdo notappearestheticallypleasingtous?Thisisaquestionthathasalwaysinterested mankind. Oneanswerisgivenbythefollowingquotationfromanearlypresidentof theCollegeofNewJersey(nowPrincetonUniversity): "Beautyisfoundinimmaterialthingslikeproportionoruniformity...calledbyvariousnamesofregularity,order,uniformity,symmetry, 1 proportion,harmony,etc. "...JonathanEdwards Symmetrynotonlyprovidesthenaturalharmonythatmakessomethingappear beautifultous,butalsoisofgreatvaluetosciencebecauseitdictatesthephysical traitsofmanyobjects. Natureitselfseemstolovebeautysinceatomstendtoself? assemble into shapes with speci?c symmetry and crystals grow in geometric lattices. Inmanycases,ifweknowthesymmetryofsomethingwecanpredict someofitsimportantpropertieswithouthavingtoresorttoexperimentationor complicatedcalculations. One area where the concept of symmetry plays an important role is that of crystalline solids. Crystals, by their very nature, exhibit speci?c symmetries. Crystallinematerialshavemanyimportantapplicationsindevicesbasedontheir electronic,optical,thermal,magnetic,andmechanicalproperties.
Solidstatep- sicistsandchemists,aswellasmaterialscientistsandengineers,havedeveloped rigorousquantumtheoreticalmodelstodescribethesepropertiesandsophisticated measurementtechniquestoverifythesemodels. Manytimes,however,inscreeningmaterialsforanewapplicationitisuseful to be able to quickly and easily determine if a speci?c material will have the appropriatepropertieswithoutmakingdetailedcalculationsorexperiments. This canbedonebyanalyzingthesymmetrypropertiesofthematerial. Themathema- calformalismthathasbeendevelopedtoaccomplishthisiscalledgrouptheory. Thesymmetrypropertiesofacrystalcanbedescribedbyagroupofmathematical 1 J. Edwards,WorksofJonathanEdwards(BannerofTruthTrust,Edinburgh,1979) v vi Preface operations. Thenusingsimplegrouptheoryprocedures,thephysicalpropertiesof thecrystalcanbedetermined. Duringthe45yearsIhavebeeninvolvedinteachingandresearchinvarious areasofsolidstatephysics,Ihavemadeextensiveuseoftheconceptsofgroup theory. YetIhavebeensurprisedathowlittleemphasisthistopicreceivesinany formaleducationalcurriculum.
Generally,astudentstudyingsolidstatephysicsor chemistrywillbeexposedtocrystalstructuresearlyinthesemesterandthenhave nofurtherexposuretocrystalsymmetryuntilsomespecialtopicsuchasnonlinear opticsisdiscussed. Thisbookfocusesonthesymmetryofcrystalsandthedescr- tionofthissymmetrythroughtheuseofgrouptheory. Althoughspeci?cexamples are provided of using this formalism to determine both the microscopic and macroscopicpropertiesofmaterials,theemphasisisonthecomprehensive,per- sivenatureofsymmetryinallareasofsolidstatescience. Theintentofthebookistobeareferencesourceforthosedoingresearchor teachinginsolidstatescienceandengineering,oratextforaspecialtycoursein grouptheoryappliedtothepropertiesofcrystals. Tucson,AZ RichardC. Powell June2010 Contents 1 SymmetryinSolids...1 1. 1 Symmetry...1 1. 2 CrystalStructures...4 1. 3 SymmetryinReciprocalSpace...15 1. 4 Problems...24 References...24 2 GroupTheory...25 2. 1 BasicConceptsofGroupTheory...27 2. 2 CharacterTables...31 2. 3 GroupTheoryExamples...40 2. 3. 1 C PointGroup...40 3v 2. 3. 2 O PointGroup...45 h 2. 4 GroupTheoryinQuantumMechanics...47 2. 5 Problems...52 References...53 3 TensorPropertiesofCrystals...55 3. 1 First-RankMatterTensors...5
7 3. 2 Second-RankMatterTensors...62 3. 3 Third-RankMatterTensors...68 3. 4 Fourth-RankMatterTensors...73 3. 5 Problems...77 References...77 4 SymmetryPropertiesofPointDefectsinSolids...79 4. 1 EnergyLevelsofFreeIons...79 4. 2 CrystalFieldSymmetry...85 4. 3 EnergyLevelsofIonsinCrystals...87 vii viii Contents 4. 4 Example:d?Electrons...95 4. 5 Example:f-Electrons...100 4. 6 Problems...104 References...104 5 SymmetryandtheOpticalPropertiesofCrystals ...
Table of Contents
Symmetry in Solids.- Group Theory.- Tensor Properties of Crystals.- Symmetry Properties of Point Defects in Solids.- Symmetry and the Optical Properties of Crystals.- Nonlinear Optics.- Symmetry and Lattice Vibrations.- Symmetry and Electron Energy Levels.
by "Nielsen BookData"