Fourier series in several variables with applications to partial differential equations

Bibliographic Information

Fourier series in several variables with applications to partial differential equations

Victor L. Shapiro

(Chapman & Hall/CRC applied mathematics and nonlinear science series)

Chapman & Hall/CRC, c2011

  • : hardback

Available at  / 16 libraries

Search this Book/Journal

Note

"CRC Press, Taylor & Francis Goup."

"A Champan & Hall book."

Includes bibliographical references (p. 331-334) and index

Description and Table of Contents

Description

Fourier Series in Several Variables with Applications to Partial Differential Equations illustrates the value of Fourier series methods in solving difficult nonlinear partial differential equations (PDEs). Using these methods, the author presents results for stationary Navier-Stokes equations, nonlinear reaction-diffusion systems, and quasilinear elliptic PDEs and resonance theory. He also establishes the connection between multiple Fourier series and number theory. The book first presents four summability methods used in studying multiple Fourier series: iterated Fejer, Bochner-Riesz, Abel, and Gauss-Weierstrass. It then covers conjugate multiple Fourier series, the analogue of Cantor's uniqueness theorem in two dimensions, surface spherical harmonics, and Schoenberg's theorem. After describing five theorems on periodic solutions of nonlinear PDEs, the text concludes with solutions of stationary Navier-Stokes equations. Discussing many results and studies from the literature, this book demonstrates the robust power of Fourier analysis in solving seemingly impenetrable nonlinear problems.

Table of Contents

Summability of Multiple Fourier Series. Conjugate Multiple Fourier Series. Uniqueness of Multiple Trigonometric Series. Positive Definite Functions. Nonlinear Partial Differential Equations. The Stationary Navier-Stokes Equations. Appendices. Bibliography. Index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top