Vector-valued Laplace transforms and Cauchy problems
Author(s)
Bibliographic Information
Vector-valued Laplace transforms and Cauchy problems
(Monographs in mathematics, v. 96)
Birkhäuser, c2011
2nd ed
Available at 24 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
ARE||1||1(2)200021323705
Note
Other authors: Charles J.K. Batty, Matthias Hieber, Frank Neubrander
Includes bibliographical references (p. [493]-523) and index
Description and Table of Contents
Description
This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to students and researchers interested in evolution equations, Laplace and Fourier transforms, and functional analysis. The second edition contains detailed notes on the developments in the last decade. They include, for instance, a new characterization of well-posedness of abstract wave equations in Hilbert space due to M. Crouzeix. Moreover new quantitative results on asymptotic behaviour of Laplace transforms have been added. The references are updated and some errors have been corrected.
Table of Contents
Preface to the First Edition.- Preface to the Second Edition.- I Laplace Transforms and Well-Posedness of Cauchy Problems.- 1 The Laplace Integral.- 2 The Laplace Transform.- 3 Cauchy Problems.- II Tauberian Theorems and Cauchy Problems.- 4 Asymptotics of Laplace Transforms.- 5 Asymptotics of Solutions of Cauchy Problems.- III Applications and Examples.- 6 The Heat Equation.- 7 The Wave Equation.- 8 Translation Invariant Operators on Lp(Rn).- A Vector-valued Holomorphic Functions.- B Closed Operators.- C Ordered Banach Spaces.- D Banach Spaces which Contain c0.- E Distributions and Fourier Multipliers.- Bibliography.- Notation.- Index.
by "Nielsen BookData"