A first course in Bayesian statistical methods

書誌事項

A first course in Bayesian statistical methods

Peter D. Hoff

(Springer texts in statistics)

Springer, c2010

  • : [pbk.]

大学図書館所蔵 件 / 10

この図書・雑誌をさがす

注記

Includes bibliographical references (p. [259]-265) and index

Some copies have different copyright year: c2009 (Softcover)

内容説明・目次

内容説明

A self-contained introduction to probability, exchangeability and Bayes' rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

目次

and examples.- Belief, probability and exchangeability.- One-parameter models.- Monte Carlo approximation.- The normal model.- Posterior approximation with the Gibbs sampler.- The multivariate normal model.- Group comparisons and hierarchical modeling.- Linear regression.- Nonconjugate priors and Metropolis-Hastings algorithms.- Linear and generalized linear mixed effects models.- Latent variable methods for ordinal data.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ