Extensions of Moser-Bangert theory : locally minimal solutions
著者
書誌事項
Extensions of Moser-Bangert theory : locally minimal solutions
(Progress in nonlinear differential equations and their applications / editor, Haim Brezis, v. 81)
Birkhäuser , Springer, c2011
大学図書館所蔵 件 / 全19件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 205-206) and index
内容説明・目次
内容説明
This self-contained monograph presents extensions of the Moser-Bangert approach that include solutions of a family of nonlinear elliptic PDEs on Rn and an Allen-Cahn PDE model of phase transitions. After recalling the relevant Moser-Bangert results, Extensions of Moser-Bangert Theory pursues the rich structure of the set of solutions of a simpler model case, expanding upon the studies of Moser and Bangert to include solutions that merely have local minimality properties.
The work is intended for mathematicians who specialize in partial differential equations and may also be used as a text for a graduate topics course in PDEs.
目次
1 Introduction.- Part I: Basic Solutions.- 2 Function Spaces and the First Renormalized Functional.- 3 The Simplest Heteroclinics.- 4 Heteroclinics in x1 and x2.- 5 More Basic Solutions.- Part II: Shadowing Results.- 6 The Simplest Cases.- 7 The Proof of Theorem 6.8.- 8 k-Transition Solutions for k > 2.- 9 Monotone 2-Transition Solutions.- 10 Monotone Multitransition Solutions.- 11 A Mixed Case.- Part III: Solutions of (PDE) Defined on R^2 x T^{n-2}.- 12 A Class of Strictly 1-Monotone Infinite Transition Solutions of (PDE).- 13 Solutions of (PDE) with Two Transitions in x1 and Heteroclinic Behavior in x2
「Nielsen BookData」 より