Special functions and the theory of group representations
著者
書誌事項
Special functions and the theory of group representations
(Translations of mathematical monographs, v. 22)
American Mathematical Society, 1988, c1968
Repr. with corrections
- タイトル別名
-
Spet︠s︡ialʹnye funkt︠s︡ii i teorii︠a︡ predstavleniĭ grupp
大学図書館所蔵 件 / 全4件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 575-600) and indexes
内容説明・目次
内容説明
A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group $SU(2)$, and the hypergeometric function and representations of the group $SL(2,R)$, as well as many other classes of special functions.
「Nielsen BookData」 より