Non-elliptic partial differential equations : analytic hypoellipticity and the courage to localize high powers of T

著者
    • Tartakoff, David S.
書誌事項

Non-elliptic partial differential equations : analytic hypoellipticity and the courage to localize high powers of T

David S. Tartakoff

(Developments in mathematics, 22)

Springer, c2011

この図書・雑誌をさがす
注記

Includes bibliographical references (p. 199-203)

内容説明・目次

内容説明

This book provides a very readable description of a technique, developed by the author years ago but as current as ever, for proving that solutions to certain (non-elliptic) partial differential equations only have real analytic solutions when the data are real analytic (locally). The technique is completely elementary but relies on a construction, a kind of a non-commutative power series, to localize the analysis of high powers of derivatives in the so-called bad direction. It is hoped that this work will permit a far greater audience of researchers to come to a deep understanding of this technique and its power and flexibility.

目次

1. What this book is and is not.- 2. Brief Introduction.- 3.Overview of Proofs.- 4. Full Proof for the Heisenberg Group.- 5. Coefficients.- 6. Pseudo-differential Problems.- 7. Sums of Squares and Real Vector Fields.- 8. \bar{\partial}-Neumann and the Boundary Laplacian.- 9. Symmetric Degeneracies.- 10. Details of the Previous Chapter. -11. Non-symplectic Strategem ahe.- 12. Operators of Kohn Type Which Lose Derivatives.- 13. Non-linear Problems.- 14. Treves' Approach.- 15. Appendix.- Bibliography.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BB06679351
  • ISBN
    • 9781441998125
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York ; London
  • ページ数/冊数
    viii, 203 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ