Microstructured materials: inverse problems

Author(s)

Bibliographic Information

Microstructured materials: inverse problems

Jaan Janno, Jüri Engelbrecht

(Springer monographs in mathematics)

Springer, c2011

Available at  / 15 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. 155-157) and index

Description and Table of Contents

Description

Complex, microstructured materials are widely used in industry and technology and include alloys, ceramics and composites. Focusing on non-destructive evaluation (NDE), this book explores in detail the mathematical modeling and inverse problems encountered when using ultrasound to investigate heterogeneous microstructured materials. The outstanding features of the text are firstly, a clear description of both linear and nonlinear mathematical models derived for modelling the propagation of ultrasonic deformation waves, and secondly, the provision of solutions to the corresponding inverse problems that determine the physical parameters of the models. The data are related to nonlinearities at both a macro- and micro- level, as well as to dispersion. The authors' goal has been to construct algorithms that allow us to determine the parameters within which we are required to characterize microstructure. To achieve this, the authors not only use conventional harmonic waves, but also propose a novel methodology based on using solitary waves in NDE. The book analyzes the uniqueness and stability of the solutions, in addition to providing numerical examples.

Table of Contents

Introduction.- 1 Inverse problems and non-destructive evaluation.- 2 Mathematical models of microstructured solids.- 3 Linear waves.- 4 Inverse problems for linear waves.- 5 Solitary waves in nonlinear models.- 6 Inverse problems for solitary waves.- 7 Summary.- References.- Index

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BB06924207
  • ISBN
    • 9783642215834
  • LCCN
    2011936963
  • Country Code
    gw
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Berlin
  • Pages/Volumes
    ix, 160 p.
  • Size
    25 cm
  • Parent Bibliography ID
Page Top