Modeling and control in vibrational and structural dynamics : a differential geometric approach
著者
書誌事項
Modeling and control in vibrational and structural dynamics : a differential geometric approach
(Chapman & Hall/CRC applied mathematics and nonlinear science series)
Taylor & Francis, c2011
- hbk
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p.387-402) and index
内容説明・目次
内容説明
Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach describes the control behavior of mechanical objects, such as wave equations, plates, and shells. It shows how the differential geometric approach is used when the coefficients of partial differential equations (PDEs) are variable in space (waves/plates), when the PDEs themselves are defined on curved surfaces (shells), and when the systems have quasilinear principal parts.
To make the book self-contained, the author starts with the necessary background on Riemannian geometry. He then describes differential geometric energy methods that are generalizations of the classical energy methods of the 1980s. He illustrates how a basic computational technique can enable multiplier schemes for controls and provide mathematical models for shells in the form of free coordinates. The author also examines the quasilinearity of models for nonlinear materials, the dependence of controllability/stabilization on variable coefficients and equilibria, and the use of curvature theory to check assumptions.
With numerous examples and exercises throughout, this book presents a complete and up-to-date account of many important advances in the modeling and control of vibrational and structural dynamics.
目次
Preliminaries from Differential Geometry. Control of the Wave Equation with Variable Coefficients in Space. Control of the Plate with Variable Coefficients in Space. Linear Shallow Shells: Modeling and Control. Naghdi's Shells: Modeling and Control. Koiter's Shells: Modeling and Controllability. Control of the Quasilinear Wave Equation in Higher Dimensions. References. Bibliography. Index.
「Nielsen BookData」 より