Methods of geometric analysis in extension and trace problems
著者
書誌事項
Methods of geometric analysis in extension and trace problems
(Monographs in mathematics, v. 102-103)
Birkhäuser, c2012
- 1
- 2
大学図書館所蔵 件 / 全22件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical reference and index
内容説明・目次
- 巻冊次
-
1 ISBN 9783034802086
内容説明
The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.
目次
Preface.- Basic Terms and Notation.- Part 1. Classical Extension-Trace Theorems and Related Results.- Chapter 1. Continuous and Lipschitz Functions.- Chapter 2. Smooth Functions on Subsets of Rn.- Part 2. Topics in Geometry of and Analysis on Metric Spaces.- Chapter 3. Topics in Metric Space Theory.- Chapter 4. Selected Topics in Analysis on Metric Spaces.- Chapter 5. Lipschitz Embedding and Selections.- Bibliography.- Index.
- 巻冊次
-
2 ISBN 9783034802116
内容説明
The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.
目次
Part 3. Lipschitz Extensions from Subsets of Metric Spaces.- Chapter 6. Extensions of Lipschitz Maps.- Chapter 7. Simultaneous Lipschitz Extensions.- Chapter 8. Linearity and Nonlinearity.- Part 4. Smooth Extension and Trace Problems for Functions on Subsets of Rn.- Chapter 9. Traces to Closed Subsets: Criteria, Applications.- Chapter 10. Whitney Problems.- Bibliography.- Index.
「Nielsen BookData」 より