Open quantum systems : an introduction
Author(s)
Bibliographic Information
Open quantum systems : an introduction
(SpringerBriefs in Physics)
Springer, c2012
- : pbk
Available at 7 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science図書
: pbk530.12/R5232080501428
Note
Bibliography: p. 89-93
Includes index
Description and Table of Contents
Description
In this volume the fundamental theory of open quantum systems is revised in the light of modern developments in the field. A unified approach to the quantum evolution of open systems is presented by merging concepts and methods traditionally employed by different communities, such as quantum optics, condensed matter, chemical physics and mathematical physics.
The mathematical structure and the general properties of the dynamical maps underlying open system dynamics are explained in detail. The microscopic derivation of dynamical equations, including both Markovian and non-Markovian evolutions, is also discussed. Because of the step-by-step explanations, this work is a useful reference to novices in this field. However, experienced researches can also benefit from the presentation of recent results.
Table of Contents
Introduction.- Mathematical tools.- Time evolution in closed quantum systems.- Time evolution in open quantum systems.- Quantum Markov process: mathematical structure.- Microscopic description: Markovian case.- Microscopic description: non-Markovian case.- Conclusion.
by "Nielsen BookData"