Coherent states and applications in mathematical physics
著者
書誌事項
Coherent states and applications in mathematical physics
(Theoretical and mathematical physics)
Springer, c2012
- : pbk
大学図書館所蔵 件 / 全11件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 405-412) and index
内容説明・目次
内容説明
This book presents the various types of coherent states introduced and studied in the physics and mathematics literature and describes their properties together with application to quantum physics problems. It is intended to serve as a compendium on coherent states and their applications for physicists and mathematicians, stretching from the basic mathematical structures of generalized coherent states in the sense of Perelomov via the semiclassical evolution of coherent states to various specific examples of coherent states (hydrogen atom, quantum oscillator, ...).
目次
The standard coherent states of quantum mechanics.- The Weyl-Heisenberg group and the coherent states of arbitrary profile.- The coherent states of the Harmonic Oscillator.- From Schroedinger to Fock-Bargmann representation.- Weyl quantization and coherent states: Classical and Quantum observables.- Wigner function.- Coherent states and operator norm estimates.- Product rule and applications.- Husimi functions, frequency sets and propagation.- The Wick and anti-Wick quantization.- The generalized coherent states in the sense of Perelomov.- The SU(1,1) coherent states: Definition and properties.- The squeezed states.- The SU(2) coherent states.- The quantum quadratic Hamiltonians: The propagator of quadratic quantum Hamiltonians.- The metaplectic transformations.- The propagation of coherent states.- Representation of the Weyl symbols of the metaplectic operators.- The semiclassical evolution of coherent states.- The van Vleck and Hermann-Kluk approximations.- The semiclassical Gutzwiller trace formula using coherent states decomposition.- The hydrogen atom coherent states: Definition and properties.- The localization around Kepler orbits.- The quantum singular oscillator: The two-body case.- The N-body case.
「Nielsen BookData」 より