Algebra for symbolic computation
著者
書誌事項
Algebra for symbolic computation
(Collana unitext, 61 . La matematica per il 3+2)
Springer, c2012
- : [pbk.]
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book deals with several topics in algebra useful for computer science applications and the symbolic treatment of algebraic problems, pointing out and discussing their algorithmic nature. The topics covered range from classical results such as the Euclidean algorithm, the Chinese remainder theorem, and polynomial interpolation, to p-adic expansions of rational and algebraic numbers and rational functions, to reach the problem of the polynomial factorisation, especially via Berlekamp's method, and the discrete Fourier transform. Basic algebra concepts are revised in a form suited for implementation on a computer algebra system.
目次
The Euclidean algorithm, the Chinese remainder theorem and interpolation.- p-adic series expansion.- The resultant.- Factorisation of polynomials.- The discrete Fourier transform.
「Nielsen BookData」 より