The divergence theorem and sets of finite perimeter
Author(s)
Bibliographic Information
The divergence theorem and sets of finite perimeter
(Monographs and textbooks in pure and applied mathematics, 303)
CRC Press, Taylor & Francis, c2012
- : hard
Available at 25 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: hardPFE||4||4200024910511
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This book is devoted to a detailed development of the divergence theorem. The framework is that of Lebesgue integration - no generalized Riemann integrals of Henstock-Kurzweil variety are involved.
In Part I the divergence theorem is established by a combinatorial argument involving dyadic cubes. Only elementary properties of the Lebesgue integral and Hausdorff measures are used. The resulting integration by parts is sufficiently general for many applications. As an example, it is applied to removable singularities of Cauchy-Riemann, Laplace, and minimal surface equations.
The sets of finite perimeter are introduced in Part II. Both the geometric and analytic points of view are presented. The equivalence of these viewpoints is obtained via the functions of bounded variation. These functions are studied in a self-contained manner with no references to Sobolev's spaces. The coarea theorem provides a link between the sets of finite perimeter and functions of bounded variation.
The general divergence theorem for bounded vector fields is proved in Part III. The proof consists of adapting the combinatorial argument of Part I to sets of finite perimeter. The unbounded vector fields and mean divergence are also discussed. The final chapter contains a characterization of the distributions that are equal to the flux of a continuous vector field.
Table of Contents
DYADIC FIGURES: Preliminaries. Divergence Theorem for Dyadic Figures. Removable Singularities. SETS OF FINITE PERIMETER: Perimeter. BV Functions. Locally BV Sets. THE DIVERGENCE THEOREM: Bounded Vector Fields. Unbounded Vector Fields. Mean Divergence. Charges. The Divergence Equation.
by "Nielsen BookData"