L[p]-theory of cylindrical boundary value problems : an operator-valued fourier multiplier and functional calculus approach
Author(s)
Bibliographic Information
L[p]-theory of cylindrical boundary value problems : an operator-valued fourier multiplier and functional calculus approach
(Research)
Springer Spektrum : Vieweg + Teubner, c2012
- : [pbk.]
- Other Title
-
Lp-theory of cylindrical boundary value problems
Available at 5 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Summary in German
[p] is superscript
Includes bibliographical references and index
Description and Table of Contents
Description
Tobias Nau addresses initial boundary value problems in cylindrical space domains with the aid of modern techniques from functional analysis and operator theory. In particular, the author uses concepts from Fourier analysis of functions with values in Banach spaces and the operator-valued functional calculus of sectorial operators. He applies abstract results to concrete problems in cylindrical space domains such as the heat equation subject to numerous boundary conditions and equations arising from fluid dynamics.
Table of Contents
Fourier Transform and Fourier Series.- Operator-valued Fourier multipliers and functional calculus.- Maximal Lp-Regularity.- Parameter-Elliptic Boundary Value Problems in Cylindrical Domains.- Periodic and Mixed Dirichlet-Neumann Boundary Conditions for the Laplacian.- Stokes Problem and Helmholtz Projection in Rectangular Cylinders.
by "Nielsen BookData"