Fractal geometry, complex dimensions and zeta functions : geometry and spectra of fractal strings

書誌事項

Fractal geometry, complex dimensions and zeta functions : geometry and spectra of fractal strings

Michel L. Lapidus, Machiel van Frankenhuijsen

(Springer monographs in mathematics)

Springer, c2013

2nd ed

大学図書館所蔵 件 / 23

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 515-547) and indexes

内容説明・目次

内容説明

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.

目次

Preface.- Overview.- Introduction.- 1. Complex Dimensions of Ordinary Fractal Strings.- 2. Complex Dimensions of Self-Similar Fractal Strings.- 3. Complex Dimensions of Nonlattice Self-Similar Strings.- 4. Generalized Fractal Strings Viewed as Measures.- 5. Explicit Formulas for Generalized Fractal Strings.- 6. The Geometry and the Spectrum of Fractal Strings.- 7. Periodic Orbits of Self-Similar Flows.- 8. Fractal Tube Formulas.- 9. Riemann Hypothesis and Inverse Spectral Problems.- 10. Generalized Cantor Strings and their Oscillations.- 11. Critical Zero of Zeta Functions.- 12 Fractality and Complex Dimensions.- 13. Recent Results and Perspectives.- Appendix A. Zeta Functions in Number Theory.- Appendix B. Zeta Functions of Laplacians and Spectral Asymptotics.- Appendix C. An Application of Nevanlinna Theory.- Bibliography.- Author Index.- Subject Index.- Index of Symbols.- Conventions.- Acknowledgements.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ