Lectures on constructive approximation : Fourier, spline, and wavelet methods on the real line, the sphere, and the ball
Author(s)
Bibliographic Information
Lectures on constructive approximation : Fourier, spline, and wavelet methods on the real line, the sphere, and the ball
(Applied and numerical harmonic analysis / series editor, John J. Benedetto)
Birkhäuser , Springer, c2013
Available at 5 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
MIC||19||1200026165283
Note
Includes bibliographical references (p. 307-315) and index
Description and Table of Contents
Description
Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball focuses on spherical problems as they occur in the geosciences and medical imaging. It comprises the author's lectures on classical approximation methods based on orthogonal polynomials and selected modern tools such as splines and wavelets.
Methods for approximating functions on the real line are treated first, as they provide the foundations for the methods on the sphere and the ball and are useful for the analysis of time-dependent (spherical) problems. The author then examines the transfer of these spherical methods to problems on the ball, such as the modeling of the Earth's or the brain's interior. Specific topics covered include:
* the advantages and disadvantages of Fourier, spline, and wavelet methods
* theory and numerics of orthogonal polynomials on intervals, spheres, and balls
* cubic splines and splines based on reproducing kernels
* multiresolution analysis using wavelets and scaling functions
This textbook is written for students in mathematics, physics, engineering, and the geosciences who have a basic background in analysis and linear algebra. The work may also be suitable as a self-study resource for researchers in the above-mentioned fields.
Table of Contents
Introduction: the Problem to be Solved.- Part I Basics.- Basic Fundamentals-What You Need to Know.- Approximation of Functions on the Real Line.- Part II Approximation on the Sphere.- Basic Aspects.- Fourier Analysis.- Spherical Splines.- Spherical Wavelet Analysis.- Spherical Slepian Functions.- Part III Approximation on the 3D Ball.- Orthonormal Bases.- Splines.- Wavelets for Inverse Problems on the 3D Ball.- The Regularized Functional Matching Pursuit (RFMP).- References.- Index.
by "Nielsen BookData"