Mathematical risk analysis : dependence, risk bounds, optimal allocations and portfolios
著者
書誌事項
Mathematical risk analysis : dependence, risk bounds, optimal allocations and portfolios
(Springer series in operations research and financial engineering)
Springer, c2013
大学図書館所蔵 全8件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 385-398) and index
内容説明・目次
内容説明
The author's particular interest in the area of risk measures is to combine this theory with the analysis of dependence properties. The present volume gives an introduction of basic concepts and methods in mathematical risk analysis, in particular of those parts of risk theory that are of special relevance to finance and insurance. Describing the influence of dependence in multivariate stochastic models on risk vectors is the main focus of the text that presents main ideas and methods as well as their relevance to practical applications. The first part introduces basic probabilistic tools and methods of distributional analysis, and describes their use to the modeling of dependence and to the derivation of risk bounds in these models. In the second, part risk measures with a particular focus on those in the financial and insurance context are presented. The final parts are then devoted to applications relevant to optimal risk allocation, optimal portfolio problems as well as to the optimization of insurance contracts. Good knowledge of basic probability and statistics as well as of basic general mathematics is a prerequisite for comfortably reading and working with the present volume, which is intended for graduate students, practitioners and researchers and can serve as a reference resource for the main concepts and techniques.
目次
Preface.-Part I: Stochastic Dependence and Extremal Risk.-1 Copulas, Sklar's Theorem, and Distributional Transform.- 2 Frechet Classes, Risk Bounds, and Duality Theory.- 3 Convex Order, Excess of Loss, and Comonotonicity.- 4 Bounds for the Distribution Function and Value at Risk of the Joint Portfolio.- 5 Restrictions on the Dependence Structure.- 6 Dependence Orderings of Risk Vectors and Portfolios.- Part II: Risk Measures and Worst Case Portfolios.- 7 Risk Measures for Real Risks.- 8 Risk Measures for Portfolio Vectors.- 9 Law Invariant Convex Risk Measures on L_d^p and Optimal Mass Transportation.- Part III: Optimal Risk Allocation.- 10 Optimal Allocations and Pareto Equilibrium.- 11 Characterization and Examples of Optimal Risk Allocations for Convex Risk Functionals.- 12 Optimal Contingent Claims and (Re)Insurance Contracts.- Part IV: Optimal Portfolios and Extreme Risks.- 13 Optimal Portfolio Diversification w.r.t. Extreme Risks.- 14 Ordering of Multivariate Risk Models with Respect to Extreme Portfolio Losses.- References.- List of Symbols.- Index.
「Nielsen BookData」 より