Pseudo-differential operators with discontinuous symbols : Widom's conjecture

書誌事項

Pseudo-differential operators with discontinuous symbols : Widom's conjecture

A.V. Sobolev

(Memoirs of the American Mathematical Society, no. 1043)

American Mathematical Society, c2012

大学図書館所蔵 件 / 11

この図書・雑誌をさがす

注記

"March 2013, volume 222, number 1043 (second of 5 numbers)."

Includes bibliographical references (p. 103-104)

内容説明・目次

内容説明

Relying on the known two-term quasiclassical asymptotic formula for the trace of the function f(A) of a Wiener-Hopf type operator A in dimension one, in 1982 H. Widom conjectured a multi-dimensional generalisation of that formula for a pseudo-differential operator A with a symbol a(x,ξ) having jump discontinuities in both variables. In 1990 he proved the conjecture for the special case when the jump in any of the two variables occurs on a hyperplane. The present paper provides a proof of Widom's Conjecture under the assumption that the symbol has jumps in both variables on arbitrary smooth bounded surfaces.

目次

Introduction Main result Estimates for PDO's with smooth symbols Trace-class estimates for operators with non-smooth symbols} Further trace-class estimates for operators with non-smooth symbols A Hilbert-Schmidt class estimate Localisation Model problem in dimension one Partitions of unity, and a reduction to the flat boundary Asymptotics of the trace (9.1) Proof of Theorem 2.9 Closing the asymptotics: Proof of Theorems 2.3 and 2.4 Appendix 1: A lemma by H. Widom Appendix 2: Change of variables Appendix 3: A trace-class formula Appendix 4: Invariance with respect to the affine change of variables Bibliography

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB12245709
  • ISBN
    • 9780821884874
  • LCCN
    2012043999
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    v, 104 p.
  • 大きさ
    26 cm
  • 親書誌ID
ページトップへ