Modern computer algebra
著者
書誌事項
Modern computer algebra
Cambridge University Press, 2013
3rd ed
- : hardback
大学図書館所蔵 全26件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 734-767) and index
内容説明・目次
内容説明
Computer algebra systems are now ubiquitous in all areas of science and engineering. This highly successful textbook, widely regarded as the 'bible of computer algebra', gives a thorough introduction to the algorithmic basis of the mathematical engine in computer algebra systems. Designed to accompany one- or two-semester courses for advanced undergraduate or graduate students in computer science or mathematics, its comprehensiveness and reliability has also made it an essential reference for professionals in the area. Special features include: detailed study of algorithms including time analysis; implementation reports on several topics; complete proofs of the mathematical underpinnings; and a wide variety of applications (among others, in chemistry, coding theory, cryptography, computational logic, and the design of calendars and musical scales). A great deal of historical information and illustration enlivens the text. In this third edition, errors have been corrected and much of the Fast Euclidean Algorithm chapter has been renovated.
目次
- Introduction
- 1. Cyclohexane, cryptography, codes, and computer algebra
- Part I. Euclid: 2. Fundamental algorithms
- 3. The Euclidean Algorithm
- 4. Applications of the Euclidean Algorithm
- 5. Modular algorithms and interpolation
- 6. The resultant and gcd computation
- 7. Application: decoding BCH codes
- Part II. Newton: 8. Fast multiplication
- 9. Newton iteration
- 10. Fast polynomial evaluation and interpolation
- 11. Fast Euclidean Algorithm
- 12. Fast linear algebra
- 13. Fourier Transform and image compression
- Part III. Gauss: 14. Factoring polynomials over finite fields
- 15. Hensel lifting and factoring polynomials
- 16. Short vectors in lattices
- 17. Applications of basis reduction
- Part IV. Fermat: 18. Primality testing
- 19. Factoring integers
- 20. Application: public key cryptography
- Part V. Hilbert: 21. Groebner bases
- 22. Symbolic integration
- 23. Symbolic summation
- 24. Applications
- Appendix: 25. Fundamental concepts
- Sources of illustrations
- Sources of quotations
- List of algorithms
- List of figures and tables
- References
- List of notation
- Index.
「Nielsen BookData」 より