Elliptic partial differential equations with almost-real coefficients

著者

    • Barton, Ariel

書誌事項

Elliptic partial differential equations with almost-real coefficients

Ariel Barton

(Memoirs of the American Mathematical Society, no. 1051)

American Mathematical Society, c2012

大学図書館所蔵 件 / 11

この図書・雑誌をさがす

注記

"May 2013, volume 223, number 1051 (fifth of 5 numbers)."

Includes bibliographical references (p. 105-108)

内容説明・目次

内容説明

In this monograph the author investigates divergence-form elliptic partial differential equations in two-dimensional Lipschitz domains whose coefficient matrices have small (but possibly nonzero) imaginary parts and depend only on one of the two coordinates. He shows that for such operators, the Dirichlet problem with boundary data in Lq can be solved for q<∞ large enough. He also shows that the Neumann and regularity problems with boundary data in Lp can be solved for p>1 small enough, and provide an endpoint result at p=1.

目次

Table of Contents Introduction Definitions and the main theorem Useful theorems The Fundamental solution Properties of layer potentials Boundedness of layer potentials Invertibility of layer potentials and other properties Uniqueness of solutions Boundary data in $H^1(\partial V)$ Concluding remarks Bibliography

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB12507135
  • ISBN
    • 9780821887400
  • LCCN
    2012051365
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    v, 108 p.
  • 大きさ
    26 cm
  • 親書誌ID
ページトップへ