Limit theorems in probability, statistics and number theory : in honor of Friedrich Götze
著者
書誌事項
Limit theorems in probability, statistics and number theory : in honor of Friedrich Götze
(Springer proceedings in mathematics & statistics, 42)
Springer, c2013
大学図書館所蔵 全8件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory.
The book is the product of a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich Goetze, a noted expert in this field.
目次
W. van Zwet: A conversation with Friedrich Goetze.- V. Bernik, V. Beresnevich, F. Goetze, O. Kukso: Distribution of algebraic numbers and metric theory of Diophantine approximation.- J. Marklof: Fine-scale statistics for the multidimensional Farey sequence.- S. G. Bobkov, M. M. Madiman: On the problem of reversibility of the entropy power inequality.- G. P. Chistyakov: On probability measures with unbounded angular ratio.- M. Gordin: CLT for stationary normal Markov chains via generalized coboundaries.- T. Mai, R. Speicher: Operator-valued and multivariate free Berry-Esseen theorems.- T. Mai, R. Speicher: Operator-valued and multivariate free Berry-Esseen theorems.- R. Bhattacharya: A nonparametric theory of statistics on manifolds.- J. Lember, H. Matzinger, F. Torres: Proportion of gaps and uctuations of the optimal score in random sequence comparison.- Y. V. Prokhorov, V. V. Ulyanov: Some approximation problems in statistics and probability.- H. Doering, P. Eichelsbacher: Moderate deviations for the determinant of Wigner matrices.- O. Friesen, M. Loewe: The semicircle law for matrices with dependent entries.- A. Tikhomirov: Limit theorems for random matrices.
「Nielsen BookData」 より