Multilevel and longitudinal modeling with IBM SPSS
著者
書誌事項
Multilevel and longitudinal modeling with IBM SPSS
(Quantitative methodology series)
Routledge, c2014
2nd ed
- : pbk
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 413-416) and index
内容説明・目次
内容説明
This book demonstrates how to use multilevel and longitudinal modeling techniques available in the IBM SPSS mixed-effects program (MIXED). Annotated screen shots provide readers with a step-by-step understanding of each technique and navigating the program. Readers learn how to set up, run, and interpret a variety of models. Diagnostic tools, data management issues, and related graphics are introduced throughout. Annotated syntax is also available for those who prefer this approach. Extended examples illustrate the logic of model development to show readers the rationale of the research questions and the steps around which the analyses are structured. The data used in the text and syntax examples are available at www.routledge.com/9780415817110.
Highlights of the new edition include:
Updated throughout to reflect IBM SPSS Version 21.
Further coverage of growth trajectories, coding time-related variables, covariance structures, individual change and longitudinal experimental designs (Ch.5).
Extended discussion of other types of research designs for examining change (e.g., regression discontinuity, quasi-experimental) over time (Ch.6).
New examples specifying multiple latent constructs and parallel growth processes (Ch. 7).
Discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures (Ch.1).
The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques which facilitate working with multilevel, longitudinal, and cross-classified data sets. Chapters 3 and 4 introduce the basics of multilevel modeling: developing a multilevel model, interpreting output, and trouble-shooting common programming and modeling problems. Models for investigating individual and organizational change are presented in chapters 5 and 6, followed by models with multivariate outcomes in chapter 7. Chapter 8 provides an illustration of multilevel models with cross-classified data structures. The book concludes with ways to expand on the various multilevel and longitudinal modeling techniques and issues when conducting multilevel analyses. It's ideal for courses on multilevel and longitudinal modeling, multivariate statistics, and research design taught in education, psychology, business, and sociology.
目次
1. Introduction to Multilevel Modeling with IBM SPSS. 2. Preparing and Examining the Data for Multilevel Analyses.
3. Defining a Basic Two-Level Multilevel Regression Model. 4. Three-Level Univariate Regression Models. 5. Examining Individual Change with Repeated Measures Data. 6. Applications of Mixed Models for Longitudinal Data.
7. Multivariate Multilevel Models. 8. Cross-Classified Multilevel Models. 9. Concluding Thoughts. Appendix A: Syntax Statements. Appendix B: Model Comparisons Across Software Applications. Appendix C: Syntax Routine to Estimate Rho from Model's Variance Components.
「Nielsen BookData」 より