Algebras, quivers and representations : the Abel Symposium 2011
Author(s)
Bibliographic Information
Algebras, quivers and representations : the Abel Symposium 2011
(Abel symposia / edited by the Norwegian Mathematical Society, 8)
Springer, c2013
Available at 19 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
C-P||Balestrand||2011.6200026156887
Note
"Abel prisen"
Includes bibliographical references
Description and Table of Contents
Description
This book features survey and research papers from The Abel Symposium 2011: Algebras, quivers and representations, held in Balestrand, Norway 2011. It examines a very active research area that has had a growing influence and profound impact in many other areas of mathematics like, commutative algebra, algebraic geometry, algebraic groups and combinatorics. This volume illustrates and extends such connections with algebraic geometry, cluster algebra theory, commutative algebra, dynamical systems and triangulated categories. In addition, it includes contributions on further developments in representation theory of quivers and algebras.
Algebras, Quivers and Representations is targeted at researchers and graduate students in algebra, representation theory and triangulate categories.
Table of Contents
C. Amiot: Preprojective algebras, singularity categories and orthogonal decompositions.- L. Avramov : (Contravariant) Koszul duality for DG algebras.- R. Buchweitz: The fundamental group of a morphism in a triangulated category.- K. Erdmann: On Hochschild cohomology of weakly symmetric special biserial algebras.- D. Happel: Algebras of finite global dimension.- K. Igusa (with G. Todorov): Continuous Frobenius categories.- D.A. Jorgensen: Triangle functors from generic hypersurfaces.- Y. Kodama (with L. Williams): Combinatorics of KP solutions from the real Grassmannian.- H. Krause: Morphisms determined by objects in triangulated categories.- P. Malicki (with J. A. de la Pena and A. Skowronski): Cycle-finite module categories.- J.A. de la Pena, P. Malicki and A. Skowronski: Cycle-finite module categories.- C.M. Ringel: Distinguished bases of exceptional modules.- A. Skowronski (with P. Malicki and J. A. de la Pena): Cycle-finite module categories.- D. Speyer and H. Thomas: Acyclic cluster algebras revisited.- H. Thomas and D. Speyer: Acyclic cluster algebras revisited.- G. Todorov and K. Igusa: Continuous Frobenius categories.- L. Williams and Y. Kodama: Combinatorics of KP solutions from the real Grassmannian.- D. Zacharia and D. Happel: Algebras of finite global dimension.
by "Nielsen BookData"