Algebras, quivers and representations : the Abel Symposium 2011
著者
書誌事項
Algebras, quivers and representations : the Abel Symposium 2011
(Abel symposia / edited by the Norwegian Mathematical Society, 8)
Springer, c2013
大学図書館所蔵 件 / 全19件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Abel prisen"
Includes bibliographical references
内容説明・目次
内容説明
This book features survey and research papers from The Abel Symposium 2011: Algebras, quivers and representations, held in Balestrand, Norway 2011. It examines a very active research area that has had a growing influence and profound impact in many other areas of mathematics like, commutative algebra, algebraic geometry, algebraic groups and combinatorics. This volume illustrates and extends such connections with algebraic geometry, cluster algebra theory, commutative algebra, dynamical systems and triangulated categories. In addition, it includes contributions on further developments in representation theory of quivers and algebras.
Algebras, Quivers and Representations is targeted at researchers and graduate students in algebra, representation theory and triangulate categories.
目次
C. Amiot: Preprojective algebras, singularity categories and orthogonal decompositions.- L. Avramov : (Contravariant) Koszul duality for DG algebras.- R. Buchweitz: The fundamental group of a morphism in a triangulated category.- K. Erdmann: On Hochschild cohomology of weakly symmetric special biserial algebras.- D. Happel: Algebras of finite global dimension.- K. Igusa (with G. Todorov): Continuous Frobenius categories.- D.A. Jorgensen: Triangle functors from generic hypersurfaces.- Y. Kodama (with L. Williams): Combinatorics of KP solutions from the real Grassmannian.- H. Krause: Morphisms determined by objects in triangulated categories.- P. Malicki (with J. A. de la Pena and A. Skowronski): Cycle-finite module categories.- J.A. de la Pena, P. Malicki and A. Skowronski: Cycle-finite module categories.- C.M. Ringel: Distinguished bases of exceptional modules.- A. Skowronski (with P. Malicki and J. A. de la Pena): Cycle-finite module categories.- D. Speyer and H. Thomas: Acyclic cluster algebras revisited.- H. Thomas and D. Speyer: Acyclic cluster algebras revisited.- G. Todorov and K. Igusa: Continuous Frobenius categories.- L. Williams and Y. Kodama: Combinatorics of KP solutions from the real Grassmannian.- D. Zacharia and D. Happel: Algebras of finite global dimension.
「Nielsen BookData」 より