The mathematical structure of classical and relativistic physics : a general classification diagram
Author(s)
Bibliographic Information
The mathematical structure of classical and relativistic physics : a general classification diagram
(Modeling and simulation in science, engineering & technology)
Birkhäuser : Springer, c2013
Available at 7 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
TON||11||1200026147878
Note
Includes bibliographical references (p. 505-512) and index
Description and Table of Contents
Description
The theories describing seemingly unrelated areas of physics have surprising analogies that have aroused the curiosity of scientists and motivated efforts to identify reasons for their existence. Comparative study of physical theories has revealed the presence of a common topological and geometric structure. The Mathematical Structure of Classical and Relativistic Physics is the first book to analyze this structure in depth, thereby exposing the relationship between (a) global physical variables and (b) space and time elements such as points, lines, surfaces, instants, and intervals. Combining this relationship with the inner and outer orientation of space and time allows one to construct a classification diagram for variables, equations, and other theoretical characteristics.
The book is divided into three parts. The first introduces the framework for the above-mentioned classification, methodically developing a geometric and topological formulation applicable to all physical laws and properties; the second applies this formulation to a detailed study of particle dynamics, electromagnetism, deformable solids, fluid dynamics, heat conduction, and gravitation. The third part further analyses the general structure of the classification diagram for variables and equations of physical theories.
Suitable for a diverse audience of physicists, engineers, and mathematicians, The Mathematical Structure of Classical and Relativistic Physics offers a valuable resource for studying the physical world. Written at a level accessible to graduate and advanced undergraduate students in mathematical physics, the book can be used as a research monograph across various areas of physics, engineering and mathematics, and as a supplemental text for a broad range of upper-level scientific coursework.
Table of Contents
1 Introduction.- Part I Analysis of variables and equations.- 2 Terminology revisited.- 3 Space and time elements and their orientation.- 4 Cell complexes.- 5 Analysis of physical variables.- 6 Analysis of physical equations.- 7 Algebraic topology.- 8 The birth of the classification diagrams.- Part II Analysis of physical theories.- 9 Particle dynamics.- 10 Electromagnetism.- 11 Mechanics of deformable solids.- 12 Mechanics of fluids.- 13 Other physical theories.- Part III Advanced analysis.- 14 General structure of the diagrams.- 15 The mathematical structure.- Part IV Appendices.- A Affine vector fields.- B Tensorial notation.- C On observable quantities.- D History of the diagram.- D.1 Historical remarks.- E List of physical variables.- F List of symbols used in this book.- G List of diagrams.- References.
by "Nielsen BookData"