Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds
著者
書誌事項
Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds
(Memoirs of the American Mathematical Society, no. 1064)
American Mathematical Society, c2013
大学図書館所蔵 全11件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"November 2013, volume 226, number 1064 (fifth of 5 numbers)."
Includes bibliographical references (p. 75-76)
内容説明・目次
内容説明
Recently, the old notion of causal boundary for a spacetime $V$ has been redefined consistently. The computation of this boundary $\partial V$ on any standard conformally stationary spacetime $V=\mathbb{R}\times M$, suggests a natural compactification $M_B$ associated to any Riemannian metric on $M$ or, more generally, to any Finslerian one. The corresponding boundary $\partial_BM$ is constructed in terms of Busemann-type functions. Roughly, $\partial_BM$ represents the set of all the directions in $M$ including both, asymptotic and ``finite'' (or ``incomplete'') directions. This Busemann boundary $\partial_BM$ is related to two classical boundaries: the Cauchy boundary $\partial_{C}M$ and the Gromov boundary $\partial_GM$. The authors' aims are: (1) to study the subtleties of both, the Cauchy boundary for any generalised (possibly non-symmetric) distance and the Gromov compactification for any (possibly incomplete) Finsler manifold, (2) to introduce the new Busemann compactification $M_B$, relating it with the previous two completions, and (3) to give a full description of the causal boundary $\partial V$ of any standard conformally stationary spacetime.
「Nielsen BookData」 より