Linear algebra : pure & applied
著者
書誌事項
Linear algebra : pure & applied
World Scientific, c2014
- : softcover
- : hardcover
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
- 巻冊次
-
: hardcover ISBN 9789814508360
内容説明
This is a matrix-oriented approach to linear algebra that covers the traditional material of the courses generally known as "Linear Algebra I" and "Linear Algebra II" throughout North America, but it also includes more advanced topics such as the pseudoinverse and the singular value decomposition that make it appropriate for a more advanced course as well. As is becoming increasingly the norm, the book begins with the geometry of Euclidean 3-space so that important concepts like linear combination, linear independence and span can be introduced early and in a "real" context. The book reflects the author's background as a pure mathematician - all the major definitions and theorems of basic linear algebra are covered rigorously - but the restriction of vector spaces to Euclidean n-space and linear transformations to matrices, for the most part, and the continual emphasis on the system Ax=b, make the book less abstract and more attractive to the students of today than some others. As the subtitle suggests, however, applications play an important role too. Coding theory and least squares are recurring themes. Other applications include electric circuits, Markov chains, quadratic forms and conic sections, facial recognition and computer graphics.
- 巻冊次
-
: softcover ISBN 9789814508377
内容説明
This is a matrix-oriented approach to linear algebra that covers the traditional material of the courses generally known as "Linear Algebra I" and "Linear Algebra II" throughout North America, but it also includes more advanced topics such as the pseudoinverse and the singular value decomposition that make it appropriate for a more advanced course as well. As is becoming increasingly the norm, the book begins with the geometry of Euclidean 3-space so that important concepts like linear combination, linear independence and span can be introduced early and in a "real" context. The book reflects the author's background as a pure mathematician - all the major definitions and theorems of basic linear algebra are covered rigorously - but the restriction of vector spaces to Euclidean n-space and linear transformations to matrices, for the most part, and the continual emphasis on the system Ax=b, make the book less abstract and more attractive to the students of today than some others. As the subtitle suggests, however, applications play an important role too. Coding theory and least squares are recurring themes. Other applications include electric circuits, Markov chains, quadratic forms and conic sections, facial recognition and computer graphics.
目次
- Euclidean n-space
- Matrices and Linear Equations
- Determinants and Eigenvalues
- Vector Spaces
- Linear Transformations
- Orthogonality
- The Spectral Theorem.
「Nielsen BookData」 より