Set theory : with an introduction to real point sets
著者
書誌事項
Set theory : with an introduction to real point sets
Birkhäuser , Springer, c2014
大学図書館所蔵 全10件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
What is a number? What is infinity? What is continuity? What is order? Answers to these fundamental questions obtained by late nineteenth-century mathematicians such as Dedekind and Cantor gave birth to set theory. This textbook presents classical set theory in an intuitive but concrete manner.
To allow flexibility of topic selection in courses, the book is organized into four relatively independent parts with distinct mathematical flavors. Part I begins with the Dedekind-Peano axioms and ends with the construction of the real numbers. The core Cantor-Dedekind theory of cardinals, orders, and ordinals appears in Part II. Part III focuses on the real continuum. Finally, foundational issues and formal axioms are introduced in Part IV. Each part ends with a postscript chapter discussing topics beyond the scope of the main text, ranging from philosophical remarks to glimpses into landmark results of modern set theory such as the resolution of Lusin's problems on projective sets using determinacy of infinite games and large cardinals.
Separating the metamathematical issues into an optional fourth part at the end makes this textbook suitable for students interested in any field of mathematics, not just for those planning to specialize in logic or foundations. There is enough material in the text for a year-long course at the upper-undergraduate level. For shorter one-semester or one-quarter courses, a variety of arrangements of topics are possible. The book will be a useful resource for both experts working in a relevant or adjacent area and beginners wanting to learn set theory via self-study.
目次
1 Preliminaries: Sets, Relations, and Functions.- Part I Dedekind: Numbers.- 2 The Dedekind-Peano Axioms.- 3 Dedekind's Theory of the Continuum.- 4 Postscript I: What Exactly Are the Natural Numbers?.- Part II Cantor: Cardinals, Order, and Ordinals.- 5 Cardinals: Finite, Countable, and Uncountable.- 6 Cardinal Arithmetic and the Cantor Set.- 7 Orders and Order Types.- 8 Dense and Complete Orders.- 9 Well-Orders and Ordinals.- 10 Alephs, Cofinality, and the Axiom of Choice.- 11 Posets, Zorn's Lemma, Ranks, and Trees.- 12 Postscript II: Infinitary Combinatorics.- Part III Real Point Sets.- 13 Interval Trees and Generalized Cantor Sets.- 14 Real Sets and Functions.- 15 The Heine-Borel and Baire Category Theorems.- 16 Cantor-Bendixson Analysis of Countable Closed Sets.- 17 Brouwer's Theorem and Sierpinski's Theorem.- 18 Borel and Analytic Sets.- 19 Postscript III: Measurability and Projective Sets.- Part IV Paradoxes and Axioms.- 20 Paradoxes and Resolutions.- 21 Zermelo-Fraenkel System and von Neumann Ordinals.- 22 Postscript IV: Landmarks of Modern Set Theory.- Appendices.- A Proofs of Uncountability of the Reals.- B Existence of Lebesgue Measure.- C List of ZF Axioms.- References.- List of Symbols and Notations.- Index.
「Nielsen BookData」 より