Die Ausdehnungslehre : vollständig und in strenger Form
Author(s)
Bibliographic Information
Die Ausdehnungslehre : vollständig und in strenger Form
(Cambridge library collection, . Mathematics)
Cambridge University Press, 2013
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"This digitally printed version 2013"--T.p. verso
Reprint. Originally published: Berlin : Th. Chr. Enslin., 1862
Includes index
Description and Table of Contents
Description
In 1844, the Prussian schoolmaster Hermann Grassmann (1809-77) published Die Lineale Ausdehnungslehre (also reissued in the Cambridge Library Collection). This revolutionary work anticipated the modern theory of vector spaces and exterior algebras. It was little understood at the time and the few sympathetic mathematicians, rather than trying harder to comprehend it, urged Grassmann to write an extended version of his theories. The present work is that version, first published in 1862. However, this also proved too far ahead of its time and Grassmann turned to historical linguistics, in which field his contributions are still remembered. His mathematical work eventually found champions such as Hankel, Peano, Whitehead and Elie Cartan, and it is now recognised for the brilliant achievement that it was in the history of mathematics.
Table of Contents
- I. Die einfachen Verknupfungen extensiver Groessen: 1. Addition, Subtraktion, Vielfachung und Theilung extensiver Groessen
- 2. Die Produktbildung im Allgemeinen
- 3. Kombinatorisches Produkt
- 4. Inneres Produkt
- 5. Anwendung auf die Geometrie
- II. Funktionslehre: 1. Funktionen im Allgemeinen
- 2. Differenzialrechnung
- 3. Unendliche Reihen
- 4. Integralrechnung.
by "Nielsen BookData"