Analysis of neural data
Author(s)
Bibliographic Information
Analysis of neural data
(Springer series in statistics)
Springer, c2014
Available at / 10 libraries
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references (p. 623-634) and indexes
Description and Table of Contents
Description
Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.
Table of Contents
Introduction.- Exploring Data.- Probability and Random Variables.- Random Vectors.- Important Probability Distributions.- Sequences of Random Variables.- Estimation and Uncertainty.- Estimation in Theory and Practice.- Uncertainty and the Bootstrap.- Statistical Significance.- General Methods for Testing Hypotheses.- Linear Regression.- Analysis of Variance.- Generalized Regression.- Nonparametric Regression.- Bayesian Methods.- Multivariate Analysis.- Time Series.- Point Processes.- Appendix: Mathematical Background.- Example Index.- Index.- Bibliography.
by "Nielsen BookData"