Gesammelte Abhandlungen Collected papers
著者
書誌事項
Gesammelte Abhandlungen = Collected papers
(Springer Collected Works in Mathematics)
Springer, 2013
- 1 : pbk
- 2 : pbk
大学図書館所蔵 件 / 全3件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Reprint of the 1987 edition"
1: 1951-1962 -- 2: 1963-1987
Includes bibliographical references
内容説明・目次
- 巻冊次
-
1 : pbk ISBN 9783642415807
内容説明
Friedrich Hirzebruch (1927 -2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure of his generation. Hirzebruch's first great mathematical achievement was the proof, in 1954, of the generalization of the classical Riemann-Roch theorem to higher dimensional complex manifolds, now known as the Hirzebruch-Riemann-Roch theorem. This used the new techniques of sheaf cohomology and was one of the centerpieces of the explosion of new results in geometry and topology during the 1950s. Further generalization of this led to the Grothendieck-Riemann-Roch theorem, and the Atiyah-Singer index theorem. He received many awards and honors, including the Wolf prize in 1988, the Lobachevsky prize in 1990, and fifteen honorary doctorates. These two volumes collect the majority of his research papers, which cover a variety of topics.
目次
Curriculum vitae. - Inhaltsverzeichnis, Artikel 1-33. Kommentare. - Schriftenverzeichnis. - Danksagung.
- 巻冊次
-
2 : pbk ISBN 9783642419553
内容説明
Friedrich Hirzebruch (1927 -2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure of his generation. Hirzebruch's first great mathematical achievement was the proof, in 1954, of the generalization of the classical Riemann-Roch theorem to higher dimensional complex manifolds, now known as the Hirzebruch-Riemann-Roch theorem. This used the new techniques of sheaf cohomology and was one of the centerpieces of the explosion of new results in geometry and topology during the 1950s. Further generalization of this led to the Grothendieck-Riemann-Roch theorem, and the Atiyah-Singer index theorem. He received many awards and honors, including the Wolf prize in 1988, the Lobachevsky prize in 1990, and fifteen honorary doctorates. These two volumes collect the majority of his research papers, which cover a variety of topics.
In zwei Banden sind fast alle Veroeffentlichungen enthalten, die F. Hirzebruch verfasst hat.
目次
34. The topology of normal singularities of an algebraic surface (d'apres un article de D. Mumford).- 36. Bericht uber Arbeiten am Mathematischen Institut der Universitat Bonn.- 37. Elliptische Differentialoperatoren auf Mannigfaltigkeiten.- 38. UEber Singularitaten komplexer Flachen.- 39. Singularities and exotic spheres.- 40. Involutionen auf Mannigfaltigkeiten.- 41. (mit K. Janich) Involutions and Singularities.- 42. The signature of ramified coverings.- 43.(mit M.F. Atiyah) Spin-manifolds and group actions.- 44. Loesung einer Aufgabe von H. Hasse.- 45. Free involutions on manifolds and some elementary number theory.- 46. Pontrjagin classes of rational homology manifolds and the signature of some affine hypersurfaces.- 47. The signature theorem: Reminiscences and recreation.- 48. The Hilbert modular group, resolution of the singularities at the cusps and related problems.- 49. (mit H. Behnke) In memoriam Heinz Hopf.- 50. The Hilbert modular group and some algebraic surfaces.- 51. Hilbert modular surfaces.- 52. (mit W. F. Hammond) L-series, modular imbeddings and signatures.- 53. (mit A. Van de Ven) Hilbert modular surfaces and the classification of algebraic surfaces.- 55. Kurven auf den Hilbertschen Modulflachen und Klassenzahl-relationen.- 56. Hilbert modular surfaces and class numbers.- 57. Hilberts's modular group of the field $$\mathbb (\sqrt{5})$$ and the cubic diagonal surface of Clebsch and Klein.- 60. (mit D. Zagier) Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus.- 61. (mit D. Zagier) Classification of Hilbert modular surfaces.- 62. The ring of Hilbert modular forms for real quadratic fields of small discriminant.- 63. Modulflachen und Modulkurven zur symmetrischen Hilbertschen Modulgruppe.- 64. UEberlagerungen der projektiven Ebene und Hilbertsche Modulflachen.- 65. (mit A. Van de Ven) Minimal Hilbert modular surfaces with pg = 3 and K2 = 2.- 66. The canonical map for certain Hilbert modular sufaces.- 67. The icosahedron.- 68. Some examples of algebraic surfaces.- 69. Arrangements of lines and algebraic surfaces.- 70. Mannigfaltigkeiten und algebraische Topologie.- 71. Chern numbers of algebraic surfaces - an example.- 73. Algebraic surfaces with extreme Chern numbers.- 74. Singularities of algebraic surfaces and characteristic numbers.- 75. Some examples of threefolds with trivial canonical bundle.- Kommentare.- Schriftenverzeichnis.- Danksagung.
「Nielsen BookData」 より